Imene/vit-base-patch16-224-in21k-wwwwwi

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.2187
  • Train Accuracy: 0.5652
  • Train Top-3-accuracy: 0.7611
  • Validation Loss: 3.8221
  • Validation Accuracy: 0.2540
  • Validation Top-3-accuracy: 0.4409
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
5.3476 0.0283 0.0716 5.1306 0.0483 0.1240 0
4.9357 0.0914 0.2057 4.7998 0.1158 0.2385 1
4.6155 0.1641 0.3230 4.5616 0.1430 0.2891 2
4.3325 0.2269 0.4188 4.3480 0.1722 0.3391 3
4.0702 0.2915 0.4984 4.1662 0.2042 0.3886 4
3.8262 0.3638 0.5758 4.0416 0.2296 0.4067 5
3.6117 0.4258 0.6415 3.9451 0.2329 0.4234 6
3.4324 0.4855 0.6956 3.8690 0.2499 0.4397 7
3.2991 0.5320 0.7376 3.8351 0.2553 0.4359 8
3.2187 0.5652 0.7611 3.8221 0.2540 0.4409 9

Framework versions

  • Transformers 4.21.2
  • TensorFlow 2.8.2
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support