File size: 4,743 Bytes
f11f568
 
 
 
 
 
965ba4a
f11f568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965ba4a
 
 
f11f568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import json
import os
from typing import List, Optional, Union

import numpy as np
import torch
from transformers import PreTrainedTokenizer


class BinnedOmicTokenizer(PreTrainedTokenizer):
    def __init__(
        self,
        n_expressions_bins: int = 64,
        min_omic_value: float = 0.0,
        max_omic_value: float = 1.0,
        use_max_normalization: bool = True,
        normalization_factor: float = 1.0,
        prepend_cls_token: bool = False,
        fixed_sequence_length: Optional[int] = None,
        unpadded_length: Optional[int] = None,
        **kwargs,
    ):
        bin_tokens = [str(i) for i in range(n_expressions_bins)]
        special_tokens = ["<pad>", "<mask>", "<cls>"]

        vocab = {tok: i for i, tok in enumerate(bin_tokens)}
        offset = len(vocab)
        for i, tok in enumerate(special_tokens):
            vocab[tok] = offset + i

        ids_to_tokens = {i: tok for tok, i in vocab.items()}

        self.vocab = vocab
        self.ids_to_tokens = ids_to_tokens

        self.n_expressions_bins = n_expressions_bins
        self.min_omic_value = min_omic_value
        self.max_omic_value = max_omic_value
        self.use_max_normalization = use_max_normalization
        self.normalization_factor = normalization_factor
        self.prepend_cls_token = prepend_cls_token
        self.fixed_sequence_length = fixed_sequence_length
        self.unpadded_length = unpadded_length

        self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)

        self.pad_token = "<pad>"
        self.mask_token = "<mask>"
        self.cls_token = "<cls>"

        super().__init__(**kwargs)

    def _convert_token_to_id(self, token: str) -> int:
        return self.vocab.get(token, self.vocab[self.unk_token])

    def _convert_id_to_token(self, index: int) -> str:
        return self.ids_to_tokens.get(index, self.unk_token)

    def get_vocab(self) -> dict:
        return self.vocab

    def _tokenize(self, text, **kwargs):
        raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")

    def decode(self, token_ids, **kwargs):
        return [self._convert_id_to_token(i) for i in token_ids]

    def encode(
        self,
        gene_expr: Union[np.ndarray, List[float]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ) -> Union[List[int], torch.Tensor]:
        gene_expr = np.array(gene_expr)

        if self.use_max_normalization:
            gene_expr = gene_expr / self.normalization_factor

        token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
        token_ids[gene_expr == 0.0] = 0

        if self.prepend_cls_token:
            token_ids = np.concatenate([[self.cls_token_id], token_ids])

        if pad_to_fixed_length:
            current_max_length = self.fixed_sequence_length or max_length
            if current_max_length is None:
                raise ValueError("fixed_sequence_length or max_length must be set.")
            pad_len = current_max_length - len(token_ids)
            if pad_len > 0:
                token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
            else:
                token_ids = token_ids[:current_max_length]

        if return_tensors == "pt":
            return torch.tensor(token_ids).unsqueeze(0)
        return token_ids.tolist()  # type: ignore

    def batch_encode_plus(
        self,
        batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
        pad_to_fixed_length: bool = False,
        max_length: Optional[int] = None,
        return_tensors: Optional[str] = None,
        **kwargs,
    ):
        if isinstance(batch_gene_expr, list):
            batch_gene_expr = np.array(batch_gene_expr)

        encoded = [
            self.encode(
                gene_expr,
                pad_to_fixed_length=pad_to_fixed_length,
                max_length=max_length,
                return_tensors=None,
                **kwargs,
            )
            for gene_expr in batch_gene_expr
        ]

        encoded = np.array(encoded, dtype=np.int64)

        if return_tensors == "pt":
            return {"input_ids": torch.tensor(encoded)}
        return {"input_ids": encoded}

    @property
    def vocab_size(self) -> int:
        return len(self.vocab)

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ):
        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + "vocab.json",
        )
        with open(vocab_file, "w") as f:
            json.dump(self.vocab, f)
        return (vocab_file,)