BulkRNABert / tokenizer.py
mgelard's picture
Upload tokenizer
965ba4a verified
import json
import os
from typing import List, Optional, Union
import numpy as np
import torch
from transformers import PreTrainedTokenizer
class BinnedOmicTokenizer(PreTrainedTokenizer):
def __init__(
self,
n_expressions_bins: int = 64,
min_omic_value: float = 0.0,
max_omic_value: float = 1.0,
use_max_normalization: bool = True,
normalization_factor: float = 1.0,
prepend_cls_token: bool = False,
fixed_sequence_length: Optional[int] = None,
unpadded_length: Optional[int] = None,
**kwargs,
):
bin_tokens = [str(i) for i in range(n_expressions_bins)]
special_tokens = ["<pad>", "<mask>", "<cls>"]
vocab = {tok: i for i, tok in enumerate(bin_tokens)}
offset = len(vocab)
for i, tok in enumerate(special_tokens):
vocab[tok] = offset + i
ids_to_tokens = {i: tok for tok, i in vocab.items()}
self.vocab = vocab
self.ids_to_tokens = ids_to_tokens
self.n_expressions_bins = n_expressions_bins
self.min_omic_value = min_omic_value
self.max_omic_value = max_omic_value
self.use_max_normalization = use_max_normalization
self.normalization_factor = normalization_factor
self.prepend_cls_token = prepend_cls_token
self.fixed_sequence_length = fixed_sequence_length
self.unpadded_length = unpadded_length
self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins)
self.pad_token = "<pad>"
self.mask_token = "<mask>"
self.cls_token = "<cls>"
super().__init__(**kwargs)
def _convert_token_to_id(self, token: str) -> int:
return self.vocab.get(token, self.vocab[self.unk_token])
def _convert_id_to_token(self, index: int) -> str:
return self.ids_to_tokens.get(index, self.unk_token)
def get_vocab(self) -> dict:
return self.vocab
def _tokenize(self, text, **kwargs):
raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.")
def decode(self, token_ids, **kwargs):
return [self._convert_id_to_token(i) for i in token_ids]
def encode(
self,
gene_expr: Union[np.ndarray, List[float]],
pad_to_fixed_length: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[str] = None,
**kwargs,
) -> Union[List[int], torch.Tensor]:
gene_expr = np.array(gene_expr)
if self.use_max_normalization:
gene_expr = gene_expr / self.normalization_factor
token_ids = np.digitize(gene_expr, self.bin_edges).astype(int)
token_ids[gene_expr == 0.0] = 0
if self.prepend_cls_token:
token_ids = np.concatenate([[self.cls_token_id], token_ids])
if pad_to_fixed_length:
current_max_length = self.fixed_sequence_length or max_length
if current_max_length is None:
raise ValueError("fixed_sequence_length or max_length must be set.")
pad_len = current_max_length - len(token_ids)
if pad_len > 0:
token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len])
else:
token_ids = token_ids[:current_max_length]
if return_tensors == "pt":
return torch.tensor(token_ids).unsqueeze(0)
return token_ids.tolist() # type: ignore
def batch_encode_plus(
self,
batch_gene_expr: Union[np.ndarray, List[np.ndarray]],
pad_to_fixed_length: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[str] = None,
**kwargs,
):
if isinstance(batch_gene_expr, list):
batch_gene_expr = np.array(batch_gene_expr)
encoded = [
self.encode(
gene_expr,
pad_to_fixed_length=pad_to_fixed_length,
max_length=max_length,
return_tensors=None,
**kwargs,
)
for gene_expr in batch_gene_expr
]
encoded = np.array(encoded, dtype=np.int64)
if return_tensors == "pt":
return {"input_ids": torch.tensor(encoded)}
return {"input_ids": encoded}
@property
def vocab_size(self) -> int:
return len(self.vocab)
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
):
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
)
with open(vocab_file, "w") as f:
json.dump(self.vocab, f)
return (vocab_file,)