|
import json |
|
import os |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
class BinnedOmicTokenizer(PreTrainedTokenizer): |
|
def __init__( |
|
self, |
|
n_expressions_bins: int = 64, |
|
min_omic_value: float = 0.0, |
|
max_omic_value: float = 1.0, |
|
use_max_normalization: bool = True, |
|
normalization_factor: float = 1.0, |
|
prepend_cls_token: bool = False, |
|
fixed_sequence_length: Optional[int] = None, |
|
unpadded_length: Optional[int] = None, |
|
**kwargs, |
|
): |
|
bin_tokens = [str(i) for i in range(n_expressions_bins)] |
|
special_tokens = ["<pad>", "<mask>", "<cls>"] |
|
|
|
vocab = {tok: i for i, tok in enumerate(bin_tokens)} |
|
offset = len(vocab) |
|
for i, tok in enumerate(special_tokens): |
|
vocab[tok] = offset + i |
|
|
|
ids_to_tokens = {i: tok for tok, i in vocab.items()} |
|
|
|
self.vocab = vocab |
|
self.ids_to_tokens = ids_to_tokens |
|
|
|
self.n_expressions_bins = n_expressions_bins |
|
self.min_omic_value = min_omic_value |
|
self.max_omic_value = max_omic_value |
|
self.use_max_normalization = use_max_normalization |
|
self.normalization_factor = normalization_factor |
|
self.prepend_cls_token = prepend_cls_token |
|
self.fixed_sequence_length = fixed_sequence_length |
|
self.unpadded_length = unpadded_length |
|
|
|
self.bin_edges = np.linspace(min_omic_value, max_omic_value, n_expressions_bins) |
|
|
|
self.pad_token = "<pad>" |
|
self.mask_token = "<mask>" |
|
self.cls_token = "<cls>" |
|
|
|
super().__init__(**kwargs) |
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self.vocab.get(token, self.vocab[self.unk_token]) |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self.ids_to_tokens.get(index, self.unk_token) |
|
|
|
def get_vocab(self) -> dict: |
|
return self.vocab |
|
|
|
def _tokenize(self, text, **kwargs): |
|
raise NotImplementedError("Use `encode` or `batch_encode_plus` methods.") |
|
|
|
def decode(self, token_ids, **kwargs): |
|
return [self._convert_id_to_token(i) for i in token_ids] |
|
|
|
def encode( |
|
self, |
|
gene_expr: Union[np.ndarray, List[float]], |
|
pad_to_fixed_length: bool = False, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[str] = None, |
|
**kwargs, |
|
) -> Union[List[int], torch.Tensor]: |
|
gene_expr = np.array(gene_expr) |
|
|
|
if self.use_max_normalization: |
|
gene_expr = gene_expr / self.normalization_factor |
|
|
|
token_ids = np.digitize(gene_expr, self.bin_edges).astype(int) |
|
token_ids[gene_expr == 0.0] = 0 |
|
|
|
if self.prepend_cls_token: |
|
token_ids = np.concatenate([[self.cls_token_id], token_ids]) |
|
|
|
if pad_to_fixed_length: |
|
current_max_length = self.fixed_sequence_length or max_length |
|
if current_max_length is None: |
|
raise ValueError("fixed_sequence_length or max_length must be set.") |
|
pad_len = current_max_length - len(token_ids) |
|
if pad_len > 0: |
|
token_ids = np.concatenate([token_ids, [self.pad_token_id] * pad_len]) |
|
else: |
|
token_ids = token_ids[:current_max_length] |
|
|
|
if return_tensors == "pt": |
|
return torch.tensor(token_ids).unsqueeze(0) |
|
return token_ids.tolist() |
|
|
|
def batch_encode_plus( |
|
self, |
|
batch_gene_expr: Union[np.ndarray, List[np.ndarray]], |
|
pad_to_fixed_length: bool = False, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[str] = None, |
|
**kwargs, |
|
): |
|
if isinstance(batch_gene_expr, list): |
|
batch_gene_expr = np.array(batch_gene_expr) |
|
|
|
encoded = [ |
|
self.encode( |
|
gene_expr, |
|
pad_to_fixed_length=pad_to_fixed_length, |
|
max_length=max_length, |
|
return_tensors=None, |
|
**kwargs, |
|
) |
|
for gene_expr in batch_gene_expr |
|
] |
|
|
|
encoded = np.array(encoded, dtype=np.int64) |
|
|
|
if return_tensors == "pt": |
|
return {"input_ids": torch.tensor(encoded)} |
|
return {"input_ids": encoded} |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return len(self.vocab) |
|
|
|
def save_vocabulary( |
|
self, save_directory: str, filename_prefix: Optional[str] = None |
|
): |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") + "vocab.json", |
|
) |
|
with open(vocab_file, "w") as f: |
|
json.dump(self.vocab, f) |
|
return (vocab_file,) |
|
|