Update README.md
Browse files
README.md
CHANGED
@@ -29,11 +29,8 @@ english_sequence = "A chat between a curious user and an artificial intelligence
|
|
29 |
dna_sequences = ["ATCGGAAAAAGATCCAGAAAGTTATACCAGGCCAATGGGAATCACCTATTACGTGGATAATAGCGATAGTATGTTACCTATAAATTTAACTACGTGGATATCAGGCAGTTACGTTACCAGTCAAGGAGCACCCAAAACTGTCCAGCAACAAGTTAATTTACCCATGAAGATGTACTGCAAGCCTTGCCAACCAGTTAAAGTAGCTACTCATAAGGTAATAAACAGTAATATCGACTTTTTATCCATTTTGATAATTGATTTATAACAGTCTATAACTGATCGCTCTACATAATCTCTATCAGATTACTATTGACACAAACAGAAACCCCGTTAATTTGTATGATATATTTCCCGGTAAGCTTCGATTTTTAATCCTATCGTGACAATTTGGAATGTAACTTATTTCGTATAGGATAAACTAATTTACACGTTTGAATTCCTAGAATATGGAGAATCTAAAGGTCCTGGCAATGCCATCGGCTTTCAATATTATAATGGACCAAAAGTTACTCTATTAGCTTCCAAAACTTCGCGTGAGTACATTAGAACAGAAGAATAACCTTCAATATCGAGAGAGTTACTATCACTAACTATCCTATG"]
|
30 |
|
31 |
# Tokenize
|
32 |
-
|
33 |
-
|
34 |
-
english_tokens = english_tokenizer(english_sequence, return_tensors="pt", padding="max_length", truncation=True, max_length=english_tokenized_sequence_length).input_ids
|
35 |
-
bio_tokens = bio_tokenizer(dna_sequences, return_tensors="pt", padding="max_length", max_length=bio_tokenized_sequence_length, truncation=True).input_ids
|
36 |
-
bio_tokens = bio_tokens.unsqueeze(0) # to simulate batch_size = 1
|
37 |
|
38 |
# Predict
|
39 |
outs = model(
|
|
|
29 |
dna_sequences = ["ATCGGAAAAAGATCCAGAAAGTTATACCAGGCCAATGGGAATCACCTATTACGTGGATAATAGCGATAGTATGTTACCTATAAATTTAACTACGTGGATATCAGGCAGTTACGTTACCAGTCAAGGAGCACCCAAAACTGTCCAGCAACAAGTTAATTTACCCATGAAGATGTACTGCAAGCCTTGCCAACCAGTTAAAGTAGCTACTCATAAGGTAATAAACAGTAATATCGACTTTTTATCCATTTTGATAATTGATTTATAACAGTCTATAACTGATCGCTCTACATAATCTCTATCAGATTACTATTGACACAAACAGAAACCCCGTTAATTTGTATGATATATTTCCCGGTAAGCTTCGATTTTTAATCCTATCGTGACAATTTGGAATGTAACTTATTTCGTATAGGATAAACTAATTTACACGTTTGAATTCCTAGAATATGGAGAATCTAAAGGTCCTGGCAATGCCATCGGCTTTCAATATTATAATGGACCAAAAGTTACTCTATTAGCTTCCAAAACTTCGCGTGAGTACATTAGAACAGAAGAATAACCTTCAATATCGAGAGAGTTACTATCACTAACTATCCTATG"]
|
30 |
|
31 |
# Tokenize
|
32 |
+
english_tokens = english_tokenizer(english_sequence, return_tensors="pt", padding="max_length", truncation=True, max_length=512).input_ids
|
33 |
+
bio_tokens = bio_tokenizer(dna_sequences, return_tensors="pt", padding="max_length", max_length=512, truncation=True).input_ids.unsqueeze(0) # unsqueeze to simulate batch_size = 1
|
|
|
|
|
|
|
34 |
|
35 |
# Predict
|
36 |
outs = model(
|