File size: 2,457 Bytes
65d461a
 
bc95c30
 
 
 
 
 
 
 
 
65d461a
bc95c30
 
 
 
 
 
 
daa0069
bc95c30
437a026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc95c30
 
 
 
 
437a026
 
bc95c30
 
 
 
7050066
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: mit
tags:
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingDynamic
datasets: 
- cnn_dailymail
metrics:
- rougeLsum
---

# INT8 DistilBart finetuned on CNN DailyMail

### Post-training dynamic quantization

This is an INT8  PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). 

The original fp32 model comes from the fine-tuned model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn).

Below linear modules (40/193) are fallbacked to fp32 for less than 1% relative accuracy loss:

**'model.decoder.layers.10.fc1'**, **'model.decoder.layers.0.fc2'**, 
**'model.decoder.layers.4.fc2'**, **'model.decoder.layers.1.fc2'**, 
**'model.decoder.layers.6.fc2'**, **'model.decoder.layers.2.fc2'**, 
**'model.decoder.layers.3.fc2'**, **'model.encoder.layers.11.fc2'**, 
**'model.decoder.layers.9.fc1'**, **'model.decoder.layers.5.fc2'**, 
**'model.decoder.layers.7.fc1'**, **'model.decoder.layers.8.fc1'**, 
**'model.encoder.layers.0.fc2'**, **'model.decoder.layers.11.fc1'**, 
**'model.encoder.layers.8.fc2'**, **'model.encoder.layers.11.fc1'**, 
**'model.decoder.layers.8.fc2'**, **'model.decoder.layers.2.fc1'**, 
**'model.decoder.layers.11.self_attn.v_proj'**, **'model.encoder.layers.9.fc1'**, 
**'model.decoder.layers.9.fc2'**, **'model.decoder.layers.7.fc2'**, 
**'model.decoder.layers.6.fc1'**, **'model.decoder.layers.0.fc1'**, 
**'model.decoder.layers.1.self_attn.v_proj'**, **'model.encoder.layers.3.fc1'**, 
**'model.encoder.layers.2.fc2'**, **'model.encoder.layers.7.fc2'**, 
**'model.decoder.layers.3.fc1'**, **'model.encoder.layers.1.fc2'**, 
**'model.encoder.layers.10.fc2'**, **'model.encoder.layers.8.fc1'**, 
**'lm_head'**, **'model.decoder.layers.6.self_attn.v_proj'**, 
**'model.decoder.layers.11.self_attn.out_proj'**, **'model.decoder.layers.11.encoder_attn.v_proj'**, 
**'model.encoder.layers.10.fc1'**, **'model.encoder.layers.6.fc1'**, 
**'model.decoder.layers.4.fc1'**, **'model.decoder.layers.1.fc1'**

### Evaluation result

|   |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-rougeLsum)** | 41.2224 | 41.5274 |
| **Model size**  |625M|1669M|

### Load with optimum:

```python
from optimum.intel import INCModelForSeq2SeqLM

model_id = "Intel/bart-large-cnn-int8-dynamic"
int8_model = INCModelForSeq2SeqLM.from_pretrained(model_id)
```