language: en | |
license: mit | |
tags: | |
- text-classfication | |
- int8 | |
- Intel® Neural Compressor | |
- PostTrainingStatic | |
- bert | |
datasets: | |
- mrpc | |
- qnli | |
metrics: | |
- f1 | |
# INT8 BERT base uncased finetuned QNLI | |
## Post-training static quantization | |
### PyTorch | |
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). | |
The original fp32 model comes from the fine-tuned model [textattack/bert-base-uncased-QNLI](https://huggingface.co/textattack/bert-base-uncased-QNLI). | |
#### Test result | |
| |INT8|FP32| | |
|---|:---:|:---:| | |
| **Accuracy (eval-f1)** |0.9081|0.9154| | |
| **Model size (MB)** |133|438| | |
#### Load with optimum: | |
```python | |
from optimum.intel import INCModelForSequenceClassification | |
model_id = "Intel/bert-base-uncased-QNLI-int8" | |
int8_model = INCModelForSequenceClassification.from_pretrained(model_id) | |
``` | |