metadata
language:
- en
license: apache-2.0
tags:
- token-classfication
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- conll2003
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-conll03-english-int8-static
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Conll2003
type: conll2003
metrics:
- name: Accuracy
type: accuracy
value: 0.9858650364082395
INT8 distilbert-base-uncased-finetuned-conll03-english
Post-training static quantization
This is an INT8 PyTorch model quantized with huggingface/optimum-intel through the usage of Intel® Neural Compressor.
The original fp32 model comes from the fine-tuned model elastic/distilbert-base-uncased-finetuned-conll03-english.
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.
Test result
INT8 | FP32 | |
---|---|---|
Accuracy (eval-accuracy) | 0.9859 | 0.9882 |
Model size (MB) | 64.5 | 253 |
Load with optimum:
from optimum.intel import INCModelForTokenClassification
model_id = "Intel/distilbert-base-uncased-finetuned-conll03-english-int8-static"
int8_model = INCModelForTokenClassification.from_pretrained(model_id)