language: | |
- en | |
license: mit | |
tags: | |
- text-classfication | |
- int8 | |
- Intel® Neural Compressor | |
- neural-compressor | |
- PostTrainingStatic | |
datasets: | |
- glue | |
metrics: | |
- f1 | |
model-index: | |
- name: roberta-base-mrpc-int8-static | |
results: | |
- task: | |
name: Text Classification | |
type: text-classification | |
dataset: | |
name: GLUE MRPC | |
type: glue | |
args: mrpc | |
metrics: | |
- name: F1 | |
type: f1 | |
value: 0.924693520140105 | |
# INT8 roberta-base-mrpc | |
### Post-training static quantization | |
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). | |
The original fp32 model comes from the fine-tuned model [roberta-base-mrpc](https://huggingface.co/Intel/roberta-base-mrpc). | |
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. | |
### Test result | |
| |INT8|FP32| | |
|---|:---:|:---:| | |
| **Accuracy (eval-f1)** |0.9177|0.9138| | |
| **Model size (MB)** |127|499| | |
### Load with Intel® Neural Compressor: | |
```python | |
from neural_compressor.utils.load_huggingface import OptimizedModel | |
int8_model = OptimizedModel.from_pretrained( | |
'Intel/roberta-base-mrpc-int8-static', | |
) | |
``` | |