echarlaix's picture
echarlaix HF staff
Update model card
7529597
|
raw
history blame
1.33 kB
metadata
language:
  - en
license: mit
tags:
  - text-classfication
  - int8
  - Intel® Neural Compressor
  - neural-compressor
  - PostTrainingStatic
datasets:
  - glue
metrics:
  - f1
model-index:
  - name: roberta-base-mrpc-int8-static
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: F1
            type: f1
            value: 0.924693520140105

INT8 roberta-base-mrpc

Post-training static quantization

This is an INT8 PyTorch model quantized with Intel® Neural Compressor.

The original fp32 model comes from the fine-tuned model roberta-base-mrpc.

The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.

Test result

INT8 FP32
Accuracy (eval-f1) 0.9177 0.9138
Model size (MB) 127 499

Load with Intel® Neural Compressor:

from optimum.intel.neural_compressor import IncQuantizedModelForSequenceClassification

model_id = "Intel/roberta-base-mrpc-int8-static"
int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(model_id)