metadata
language:
- en
license: mit
tags:
- text-classfication
- int8
- Neural Compressor
- PostTrainingStatic
datasets:
- glue
metrics:
- f1
model-index:
- name: roberta-base-mrpc-int8-static
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: F1
type: f1
value: 0.924693520140105
INT8 roberta-base-mrpc
Post-training static quantization
This is an INT8 PyTorch model quantized with Intel® Neural Compressor.
The original fp32 model comes from the fine-tuned model roberta-base-mrpc.
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304.
The embedding module roberta.embeddings.token_type_embeddings falls back to fp32 due to RuntimeError('Expect weight, indices, and offsets to be contiguous.')
Test result
INT8 | FP32 | |
---|---|---|
Accuracy (eval-f1) | 0.9247 | 0.9138 |
Model size (MB) | 121 | 476 |
Load with Intel® Neural Compressor:
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/roberta-base-mrpc-int8-static',
)