Delete safetensors_util.py
Browse files- safetensors_util.py +0 -81
safetensors_util.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
import pickle
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Dict, Optional, Tuple
|
5 |
-
|
6 |
-
import safetensors.torch
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from .aliases import PathOrStr
|
10 |
-
|
11 |
-
__all__ = [
|
12 |
-
"state_dict_to_safetensors_file",
|
13 |
-
"safetensors_file_to_state_dict",
|
14 |
-
]
|
15 |
-
|
16 |
-
|
17 |
-
@dataclass(eq=True, frozen=True)
|
18 |
-
class STKey:
|
19 |
-
keys: Tuple
|
20 |
-
value_is_pickled: bool
|
21 |
-
|
22 |
-
|
23 |
-
def encode_key(key: STKey) -> str:
|
24 |
-
b = pickle.dumps((key.keys, key.value_is_pickled))
|
25 |
-
b = base64.urlsafe_b64encode(b)
|
26 |
-
return str(b, "ASCII")
|
27 |
-
|
28 |
-
|
29 |
-
def decode_key(key: str) -> STKey:
|
30 |
-
b = base64.urlsafe_b64decode(key)
|
31 |
-
keys, value_is_pickled = pickle.loads(b)
|
32 |
-
return STKey(keys, value_is_pickled)
|
33 |
-
|
34 |
-
|
35 |
-
def flatten_dict(d: Dict) -> Dict[STKey, torch.Tensor]:
|
36 |
-
result = {}
|
37 |
-
for key, value in d.items():
|
38 |
-
if isinstance(value, torch.Tensor):
|
39 |
-
result[STKey((key,), False)] = value
|
40 |
-
elif isinstance(value, dict):
|
41 |
-
value = flatten_dict(value)
|
42 |
-
for inner_key, inner_value in value.items():
|
43 |
-
result[STKey((key,) + inner_key.keys, inner_key.value_is_pickled)] = inner_value
|
44 |
-
else:
|
45 |
-
pickled = bytearray(pickle.dumps(value))
|
46 |
-
pickled_tensor = torch.frombuffer(pickled, dtype=torch.uint8)
|
47 |
-
result[STKey((key,), True)] = pickled_tensor
|
48 |
-
return result
|
49 |
-
|
50 |
-
|
51 |
-
def unflatten_dict(d: Dict[STKey, torch.Tensor]) -> Dict:
|
52 |
-
result: Dict = {}
|
53 |
-
|
54 |
-
for key, value in d.items():
|
55 |
-
if key.value_is_pickled:
|
56 |
-
value = pickle.loads(value.numpy().data)
|
57 |
-
|
58 |
-
target_dict = result
|
59 |
-
for k in key.keys[:-1]:
|
60 |
-
new_target_dict = target_dict.get(k)
|
61 |
-
if new_target_dict is None:
|
62 |
-
new_target_dict = {}
|
63 |
-
target_dict[k] = new_target_dict
|
64 |
-
target_dict = new_target_dict
|
65 |
-
target_dict[key.keys[-1]] = value
|
66 |
-
|
67 |
-
return result
|
68 |
-
|
69 |
-
|
70 |
-
def state_dict_to_safetensors_file(state_dict: Dict, filename: PathOrStr):
|
71 |
-
state_dict = flatten_dict(state_dict)
|
72 |
-
state_dict = {encode_key(k): v for k, v in state_dict.items()}
|
73 |
-
safetensors.torch.save_file(state_dict, filename)
|
74 |
-
|
75 |
-
|
76 |
-
def safetensors_file_to_state_dict(filename: PathOrStr, map_location: Optional[str] = None) -> Dict:
|
77 |
-
if map_location is None:
|
78 |
-
map_location = "cpu"
|
79 |
-
state_dict = safetensors.torch.load_file(filename, device=map_location)
|
80 |
-
state_dict = {decode_key(k): v for k, v in state_dict.items()}
|
81 |
-
return unflatten_dict(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|