Upload config.py with huggingface_hub
Browse files
config.py
ADDED
@@ -0,0 +1,1106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from dataclasses import asdict, dataclass, field
|
4 |
+
from glob import glob
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Dict,
|
9 |
+
Iterable,
|
10 |
+
List,
|
11 |
+
Optional,
|
12 |
+
Tuple,
|
13 |
+
Type,
|
14 |
+
TypeVar,
|
15 |
+
Union,
|
16 |
+
cast,
|
17 |
+
)
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from omegaconf import DictConfig, ListConfig
|
21 |
+
from omegaconf import OmegaConf as om
|
22 |
+
from omegaconf.errors import OmegaConfBaseException
|
23 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
24 |
+
|
25 |
+
from .aliases import PathOrStr
|
26 |
+
from .beam_search import Sampler
|
27 |
+
from .exceptions import OLMoConfigurationError
|
28 |
+
from .util import StrEnum
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
"ActivationType",
|
32 |
+
"ActivationCheckpointingStrategy",
|
33 |
+
"BlockType",
|
34 |
+
"LayerNormType",
|
35 |
+
"InitFnType",
|
36 |
+
"ModelConfig",
|
37 |
+
"OptimizerType",
|
38 |
+
"OptimizerConfig",
|
39 |
+
"SchedulerType",
|
40 |
+
"SchedulerConfig",
|
41 |
+
"DataConfig",
|
42 |
+
"EvaluatorConfig",
|
43 |
+
"TokenizerConfig",
|
44 |
+
"TrainConfig",
|
45 |
+
"PaddingDirection",
|
46 |
+
"TruncationDirection",
|
47 |
+
"SpeedMonitorConfig",
|
48 |
+
"WandbConfig",
|
49 |
+
"CompilerConfig",
|
50 |
+
"WandbConfig",
|
51 |
+
"FSDPPrecision",
|
52 |
+
"FSDPWrapStrategy",
|
53 |
+
"FSDPConfig",
|
54 |
+
"CheckpointType",
|
55 |
+
]
|
56 |
+
|
57 |
+
C = TypeVar("C", bound="BaseConfig")
|
58 |
+
D = TypeVar("D", bound="DictConfig|ListConfig")
|
59 |
+
|
60 |
+
|
61 |
+
class BaseConfig:
|
62 |
+
@classmethod
|
63 |
+
def _register_resolvers(cls, validate_paths: bool = True):
|
64 |
+
# Expands path globs into a list.
|
65 |
+
def path_glob(*paths) -> List[str]:
|
66 |
+
out = []
|
67 |
+
for path in paths:
|
68 |
+
matches = sorted(glob(path))
|
69 |
+
if not matches and validate_paths:
|
70 |
+
raise FileNotFoundError(f"{path} does not match any files or dirs")
|
71 |
+
out.extend(matches)
|
72 |
+
return out
|
73 |
+
|
74 |
+
# Chooses the first path in the arguments that exists.
|
75 |
+
def path_choose(*paths) -> str:
|
76 |
+
from .util import is_url
|
77 |
+
|
78 |
+
for path in paths:
|
79 |
+
if is_url(path) or Path(path).exists():
|
80 |
+
return path
|
81 |
+
if validate_paths:
|
82 |
+
raise FileNotFoundError(", ".join(paths))
|
83 |
+
else:
|
84 |
+
return ""
|
85 |
+
|
86 |
+
# Finds the latest checkpoint in a folder.
|
87 |
+
def path_last_checkpoint(path) -> str:
|
88 |
+
from .util import find_latest_checkpoint
|
89 |
+
|
90 |
+
latest_checkpoint = find_latest_checkpoint(path)
|
91 |
+
if latest_checkpoint is None:
|
92 |
+
if validate_paths:
|
93 |
+
raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
|
94 |
+
else:
|
95 |
+
return ""
|
96 |
+
else:
|
97 |
+
return str(latest_checkpoint)
|
98 |
+
|
99 |
+
om.register_new_resolver("path.glob", path_glob, replace=True)
|
100 |
+
om.register_new_resolver("path.choose", path_choose, replace=True)
|
101 |
+
om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def update_legacy_settings(cls, config: D) -> D:
|
105 |
+
"""
|
106 |
+
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
|
107 |
+
"""
|
108 |
+
return config
|
109 |
+
|
110 |
+
@classmethod
|
111 |
+
def new(cls: Type[C], **kwargs) -> C:
|
112 |
+
cls._register_resolvers()
|
113 |
+
conf = om.structured(cls)
|
114 |
+
try:
|
115 |
+
if kwargs:
|
116 |
+
conf = om.merge(conf, kwargs)
|
117 |
+
return cast(C, om.to_object(conf))
|
118 |
+
except OmegaConfBaseException as e:
|
119 |
+
raise OLMoConfigurationError(str(e))
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def load(
|
123 |
+
cls: Type[C],
|
124 |
+
path: PathOrStr,
|
125 |
+
overrides: Optional[List[str]] = None,
|
126 |
+
key: Optional[str] = None,
|
127 |
+
validate_paths: bool = True,
|
128 |
+
) -> C:
|
129 |
+
"""Load from a YAML file."""
|
130 |
+
cls._register_resolvers(validate_paths=validate_paths)
|
131 |
+
schema = om.structured(cls)
|
132 |
+
try:
|
133 |
+
raw = om.load(str(path))
|
134 |
+
if key is not None:
|
135 |
+
raw = raw[key] # type: ignore
|
136 |
+
raw = cls.update_legacy_settings(raw)
|
137 |
+
conf = om.merge(schema, raw)
|
138 |
+
if overrides:
|
139 |
+
conf = om.merge(conf, om.from_dotlist(overrides))
|
140 |
+
return cast(C, om.to_object(conf))
|
141 |
+
except OmegaConfBaseException as e:
|
142 |
+
raise OLMoConfigurationError(str(e))
|
143 |
+
|
144 |
+
def save(self, path: PathOrStr) -> None:
|
145 |
+
"""Save to a YAML file."""
|
146 |
+
om.save(config=self, f=str(path))
|
147 |
+
|
148 |
+
def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
|
149 |
+
out = asdict(self) # type: ignore
|
150 |
+
if exclude is not None:
|
151 |
+
for name in exclude:
|
152 |
+
if name in out:
|
153 |
+
del out[name]
|
154 |
+
return out
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNormType(StrEnum):
|
158 |
+
default = "default"
|
159 |
+
"""
|
160 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
161 |
+
"""
|
162 |
+
|
163 |
+
low_precision = "low_precision"
|
164 |
+
"""
|
165 |
+
A low-precision version of the default LayerNorm.
|
166 |
+
"""
|
167 |
+
|
168 |
+
rms = "rms"
|
169 |
+
"""
|
170 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
171 |
+
probably the fastest implementation.
|
172 |
+
"""
|
173 |
+
|
174 |
+
|
175 |
+
class ActivationType(StrEnum):
|
176 |
+
gelu = "gelu"
|
177 |
+
relu = "relu"
|
178 |
+
swiglu = "swiglu"
|
179 |
+
|
180 |
+
|
181 |
+
class BlockType(StrEnum):
|
182 |
+
sequential = "sequential"
|
183 |
+
|
184 |
+
llama = "llama"
|
185 |
+
"""
|
186 |
+
A block similar to the sequential block with slightly different
|
187 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
188 |
+
"""
|
189 |
+
|
190 |
+
|
191 |
+
class InitFnType(StrEnum):
|
192 |
+
mitchell = "mitchell"
|
193 |
+
"""
|
194 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
195 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
196 |
+
on the size of the weights as well as the depth of the layer.
|
197 |
+
"""
|
198 |
+
|
199 |
+
normal = "normal"
|
200 |
+
"""
|
201 |
+
All weights are initialized from the same normal distribution.
|
202 |
+
"""
|
203 |
+
|
204 |
+
kaiming_normal = "kaiming_normal"
|
205 |
+
"""
|
206 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
207 |
+
Note this currently won't work with FSDP.
|
208 |
+
"""
|
209 |
+
|
210 |
+
fan_in = "fan_in"
|
211 |
+
"""
|
212 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
213 |
+
is the input dimensionality of the kernel.
|
214 |
+
"""
|
215 |
+
|
216 |
+
full_megatron = "full_megatron"
|
217 |
+
"""
|
218 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
219 |
+
"""
|
220 |
+
|
221 |
+
|
222 |
+
@dataclass
|
223 |
+
class ModelConfig(BaseConfig):
|
224 |
+
"""
|
225 |
+
OLMo (model) configuration.
|
226 |
+
"""
|
227 |
+
|
228 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
229 |
+
|
230 |
+
d_model: int = 768
|
231 |
+
"""
|
232 |
+
The hidden size of the model.
|
233 |
+
"""
|
234 |
+
|
235 |
+
n_heads: int = 12
|
236 |
+
"""
|
237 |
+
The number of self-attention heads.
|
238 |
+
"""
|
239 |
+
|
240 |
+
n_kv_heads: Optional[int] = None
|
241 |
+
"""
|
242 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
243 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
244 |
+
Set this to 1 for multi-query attention.
|
245 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
246 |
+
"""
|
247 |
+
|
248 |
+
clip_qkv: Optional[float] = None
|
249 |
+
"""
|
250 |
+
Clip QKV to this value when set.
|
251 |
+
"""
|
252 |
+
|
253 |
+
n_layers: int = 12
|
254 |
+
"""
|
255 |
+
The number of layers/blocks.
|
256 |
+
"""
|
257 |
+
|
258 |
+
mlp_ratio: int = 4
|
259 |
+
"""
|
260 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
261 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
262 |
+
"""
|
263 |
+
|
264 |
+
mlp_hidden_size: Optional[int] = None
|
265 |
+
"""
|
266 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
267 |
+
"""
|
268 |
+
|
269 |
+
activation_type: ActivationType = ActivationType.swiglu
|
270 |
+
"""
|
271 |
+
The activation function to use within the MLP layers.
|
272 |
+
"""
|
273 |
+
|
274 |
+
block_type: BlockType = BlockType.sequential
|
275 |
+
"""
|
276 |
+
The transformer block implementation.
|
277 |
+
"""
|
278 |
+
|
279 |
+
block_group_size: int = 1
|
280 |
+
"""
|
281 |
+
The number of blocks to group together into a single parent block.
|
282 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
283 |
+
of blocks together with a single FSDP wrapper during training.
|
284 |
+
"""
|
285 |
+
|
286 |
+
alibi: bool = False
|
287 |
+
"""
|
288 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
289 |
+
"""
|
290 |
+
|
291 |
+
alibi_bias_max: float = 8.0
|
292 |
+
"""
|
293 |
+
Maximum absolute value of ALiBi bias.
|
294 |
+
"""
|
295 |
+
|
296 |
+
rope: bool = False
|
297 |
+
"""
|
298 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
299 |
+
"""
|
300 |
+
|
301 |
+
rope_full_precision: bool = True
|
302 |
+
"""
|
303 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
304 |
+
apply RoPE at the precision of the input.
|
305 |
+
"""
|
306 |
+
|
307 |
+
flash_attention: bool = False
|
308 |
+
"""
|
309 |
+
If ``True``, use ``FlashAttention``.
|
310 |
+
"""
|
311 |
+
|
312 |
+
attention_dropout: float = 0.1
|
313 |
+
"""
|
314 |
+
The dropout probability within the attention modules.
|
315 |
+
"""
|
316 |
+
|
317 |
+
multi_query_attention: Optional[bool] = None
|
318 |
+
"""
|
319 |
+
Deprecated. Use n_kv_heads instead.
|
320 |
+
"""
|
321 |
+
|
322 |
+
attention_layer_norm: bool = False
|
323 |
+
"""
|
324 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
325 |
+
This can help stabilize training.
|
326 |
+
"""
|
327 |
+
|
328 |
+
residual_dropout: float = 0.1
|
329 |
+
"""
|
330 |
+
The dropout probability for the MLP and attention output within each block.
|
331 |
+
"""
|
332 |
+
|
333 |
+
embedding_dropout: float = 0.1
|
334 |
+
"""
|
335 |
+
The dropout probability for embeddings.
|
336 |
+
"""
|
337 |
+
|
338 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
339 |
+
"""
|
340 |
+
The layernorm implementation to use.
|
341 |
+
"""
|
342 |
+
|
343 |
+
layer_norm_with_affine: bool = True
|
344 |
+
"""
|
345 |
+
Whether to include bias and weight parameters for the layer norms.
|
346 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
347 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
348 |
+
to ``False``.
|
349 |
+
"""
|
350 |
+
|
351 |
+
attention_layer_norm_with_affine: bool = True
|
352 |
+
"""
|
353 |
+
Toggle affine transform for the QK norms.
|
354 |
+
"""
|
355 |
+
|
356 |
+
max_sequence_length: int = 1024
|
357 |
+
"""
|
358 |
+
The maximum input sequence length supported by the model.
|
359 |
+
"""
|
360 |
+
|
361 |
+
include_bias: bool = True
|
362 |
+
"""
|
363 |
+
Whether or not to include bias parameters in linear layers.
|
364 |
+
In PaLM, they got rid of all bias terms because they found that large
|
365 |
+
models tend to have near 0 bias terms anyway.
|
366 |
+
"""
|
367 |
+
|
368 |
+
bias_for_layer_norm: Optional[bool] = None
|
369 |
+
"""
|
370 |
+
Whether or not to include bias parameters in layer norm.
|
371 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
372 |
+
layer norm.
|
373 |
+
When this is None (the default), it inherits the setting from include_bias.
|
374 |
+
"""
|
375 |
+
|
376 |
+
scale_logits: bool = False
|
377 |
+
"""
|
378 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
379 |
+
"""
|
380 |
+
|
381 |
+
vocab_size: int = 50257
|
382 |
+
"""
|
383 |
+
Vocabulary size of the model.
|
384 |
+
"""
|
385 |
+
|
386 |
+
embedding_size: Optional[int] = 50304
|
387 |
+
"""
|
388 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
389 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
390 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
391 |
+
substantially.
|
392 |
+
"""
|
393 |
+
|
394 |
+
weight_tying: bool = True
|
395 |
+
"""
|
396 |
+
Whether to tie output linear weights to the input embedding.
|
397 |
+
"""
|
398 |
+
|
399 |
+
eos_token_id: int = 50256
|
400 |
+
"""
|
401 |
+
The ID of the end-of-sentence special token.
|
402 |
+
"""
|
403 |
+
|
404 |
+
pad_token_id: int = 50256
|
405 |
+
"""
|
406 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
407 |
+
"""
|
408 |
+
|
409 |
+
init_device: Optional[str] = None
|
410 |
+
"""
|
411 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
412 |
+
"""
|
413 |
+
|
414 |
+
init_fn: InitFnType = InitFnType.normal
|
415 |
+
"""
|
416 |
+
The weight initialization strategy.
|
417 |
+
"""
|
418 |
+
|
419 |
+
init_std: float = 0.02
|
420 |
+
"""
|
421 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
422 |
+
as "normal".
|
423 |
+
"""
|
424 |
+
|
425 |
+
init_cutoff_factor: Optional[float] = None
|
426 |
+
"""
|
427 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
428 |
+
as "normal". Setting this to None means values are not cutoff.
|
429 |
+
"""
|
430 |
+
|
431 |
+
precision: Optional[str] = None
|
432 |
+
"""
|
433 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
434 |
+
See :data:`TrainConfig.precision` instead.
|
435 |
+
"""
|
436 |
+
|
437 |
+
ternary: bool = False
|
438 |
+
"""
|
439 |
+
Use ternary BitLinear layer from "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits" (https://arxiv.org/pdf/2402.17764.pdf)
|
440 |
+
"""
|
441 |
+
|
442 |
+
@property
|
443 |
+
def effective_n_kv_heads(self) -> int:
|
444 |
+
if self.n_kv_heads is None:
|
445 |
+
if self.multi_query_attention is True:
|
446 |
+
return 1
|
447 |
+
else:
|
448 |
+
return self.n_heads
|
449 |
+
else:
|
450 |
+
if self.multi_query_attention is None:
|
451 |
+
return self.n_kv_heads
|
452 |
+
if self.multi_query_attention:
|
453 |
+
n_kv_heads_should_be = 1
|
454 |
+
else:
|
455 |
+
n_kv_heads_should_be = self.n_heads
|
456 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
457 |
+
return n_kv_heads_should_be
|
458 |
+
else:
|
459 |
+
raise OLMoConfigurationError(
|
460 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
class OptimizerType(StrEnum):
|
465 |
+
lionw = "lionw"
|
466 |
+
adamw = "adamw"
|
467 |
+
|
468 |
+
|
469 |
+
@dataclass
|
470 |
+
class OptimizerConfig(BaseConfig):
|
471 |
+
name: OptimizerType = OptimizerType.lionw
|
472 |
+
learning_rate: float = 1.0e-4
|
473 |
+
weight_decay: float = 0.01
|
474 |
+
betas: Tuple[float, float] = (0.9, 0.95)
|
475 |
+
|
476 |
+
no_decay_norm_and_bias: Optional[bool] = None
|
477 |
+
"""
|
478 |
+
Deprecated. Use ``decay_norm_and_bias`` and ``decay_embeddings`` instead.
|
479 |
+
"""
|
480 |
+
|
481 |
+
decay_norm_and_bias: bool = False
|
482 |
+
decay_embeddings: bool = False
|
483 |
+
metrics_log_interval: Optional[int] = None
|
484 |
+
"""
|
485 |
+
The interval with which to collect and log detailed parameter-specific metrics.
|
486 |
+
This only applies when logging to W&B, since these metrics won't be logged to the console.
|
487 |
+
If not set, defaults to the wandb `log_interval`.
|
488 |
+
"""
|
489 |
+
|
490 |
+
def __post_init__(self):
|
491 |
+
self.betas = tuple(self.betas) # type: ignore[assignment]
|
492 |
+
|
493 |
+
@classmethod
|
494 |
+
def update_legacy_settings(cls, config: D) -> D:
|
495 |
+
new_config = config.copy()
|
496 |
+
if om.is_dict(new_config):
|
497 |
+
assert isinstance(new_config, DictConfig)
|
498 |
+
|
499 |
+
if hasattr(new_config, "name") and new_config.name == "decoupled_lionw":
|
500 |
+
new_config.name = "lionw"
|
501 |
+
if hasattr(new_config, "eps"):
|
502 |
+
del new_config.eps
|
503 |
+
|
504 |
+
return new_config
|
505 |
+
|
506 |
+
|
507 |
+
class SchedulerType(StrEnum):
|
508 |
+
cosine_with_warmup = "cosine_with_warmup"
|
509 |
+
linear_with_warmup = "linear_with_warmup"
|
510 |
+
inverse_sqrt_with_warmup = "inverse_sqrt_with_warmup"
|
511 |
+
max_scheduler = "max_scheduler"
|
512 |
+
constant = "constant"
|
513 |
+
|
514 |
+
|
515 |
+
class SchedulerUnits(StrEnum):
|
516 |
+
steps = "steps"
|
517 |
+
tokens = "tokens"
|
518 |
+
|
519 |
+
|
520 |
+
@dataclass
|
521 |
+
class SchedulerConfig(BaseConfig):
|
522 |
+
name: SchedulerType = SchedulerType.cosine_with_warmup
|
523 |
+
units: SchedulerUnits = SchedulerUnits.steps
|
524 |
+
t_warmup: Union[int, float] = 100
|
525 |
+
t_max: Optional[Union[int, float]] = None
|
526 |
+
alpha_f: float = 0.1
|
527 |
+
|
528 |
+
grad_clip_warmup_steps: Optional[Union[int, float]] = None
|
529 |
+
"""
|
530 |
+
The warmup period for which the max grad norm (or norm ratio) will be set to its
|
531 |
+
warmup value of `max_grad_norm * grad_clip_warmup_factor`.
|
532 |
+
"""
|
533 |
+
|
534 |
+
grad_clip_warmup_factor: Optional[float] = None
|
535 |
+
"""
|
536 |
+
The ratio of the max allowed gradient norm (or norm ratio) for clipping during the warmup period
|
537 |
+
vs after the warmup period.
|
538 |
+
"""
|
539 |
+
|
540 |
+
|
541 |
+
class PaddingDirection(StrEnum):
|
542 |
+
right = "right"
|
543 |
+
left = "left"
|
544 |
+
|
545 |
+
|
546 |
+
@dataclass
|
547 |
+
class DataConfig(BaseConfig):
|
548 |
+
paths: Optional[List[str]] = None
|
549 |
+
datasets: Optional[Dict[str, List[str]]] = None
|
550 |
+
label_mask_paths: Optional[List[str]] = None
|
551 |
+
pad_direction: PaddingDirection = PaddingDirection.right
|
552 |
+
generate_attention_mask: bool = False
|
553 |
+
num_workers: int = 0
|
554 |
+
drop_last: bool = False
|
555 |
+
pin_memory: bool = False
|
556 |
+
prefetch_factor: Optional[int] = None
|
557 |
+
persistent_workers: bool = False
|
558 |
+
timeout: int = 0
|
559 |
+
seed: Optional[int] = None
|
560 |
+
|
561 |
+
|
562 |
+
class EvaluatorType(StrEnum):
|
563 |
+
downstream = "downstream"
|
564 |
+
lm = "lm"
|
565 |
+
|
566 |
+
|
567 |
+
@dataclass
|
568 |
+
class EvaluatorConfig(BaseConfig):
|
569 |
+
label: str
|
570 |
+
type: EvaluatorType = EvaluatorType.lm
|
571 |
+
data: DataConfig = field(default_factory=DataConfig)
|
572 |
+
device_eval_batch_size: Optional[int] = None
|
573 |
+
subset_num_batches: Optional[int] = None
|
574 |
+
|
575 |
+
|
576 |
+
class TruncationDirection(StrEnum):
|
577 |
+
right = "right"
|
578 |
+
left = "left"
|
579 |
+
|
580 |
+
|
581 |
+
@dataclass
|
582 |
+
class TokenizerConfig(BaseConfig):
|
583 |
+
identifier: str = "gpt2"
|
584 |
+
truncate_direction: TruncationDirection = TruncationDirection.right
|
585 |
+
|
586 |
+
|
587 |
+
@dataclass
|
588 |
+
class WandbConfig(BaseConfig):
|
589 |
+
project: Optional[str] = None
|
590 |
+
entity: Optional[str] = "ai2-llm"
|
591 |
+
group: Optional[str] = None
|
592 |
+
name: Optional[str] = None
|
593 |
+
tags: Optional[List[str]] = field(default_factory=lambda: ["watching"])
|
594 |
+
log_artifacts: bool = False
|
595 |
+
rank_zero_only: bool = True
|
596 |
+
log_interval: int = 1
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class SpeedMonitorConfig(BaseConfig):
|
601 |
+
window_size: int = 100
|
602 |
+
gpu_flops_available: Optional[Union[float, int]] = None
|
603 |
+
|
604 |
+
|
605 |
+
@dataclass
|
606 |
+
class CompilerConfig(BaseConfig):
|
607 |
+
mode: Optional[str] = None
|
608 |
+
"""
|
609 |
+
The mode to compile the model in. At the moment this can be "default",
|
610 |
+
"reduce-overhead" (useful for smaller models/batches), or "max-autotune"
|
611 |
+
(the fastest for larger models, but takes a long time to compile).
|
612 |
+
"""
|
613 |
+
|
614 |
+
fullgraph: bool = False
|
615 |
+
"""
|
616 |
+
Whether it is OK to break model into several subgraphs when compiling.
|
617 |
+
Note that this is not compatible with FSDP.
|
618 |
+
"""
|
619 |
+
|
620 |
+
backend: str = "inductor"
|
621 |
+
"""
|
622 |
+
The backend to use.
|
623 |
+
"""
|
624 |
+
|
625 |
+
|
626 |
+
class FSDPWrapStrategy(StrEnum):
|
627 |
+
by_block = "by_block"
|
628 |
+
"""
|
629 |
+
Wrap each OLMo block with its own FSDP instance.
|
630 |
+
"""
|
631 |
+
|
632 |
+
by_block_and_size = "by_block_and_size"
|
633 |
+
"""
|
634 |
+
Like 'by_block' but `wte` and `ff_out` will be wrapped separately as well.
|
635 |
+
"""
|
636 |
+
|
637 |
+
by_block_group = "by_block_group"
|
638 |
+
"""
|
639 |
+
Wrap each block group together into its own FSDP instance.
|
640 |
+
This requires :attr:`~ModelConfig.block_group_size` to be bigger than 1.
|
641 |
+
"""
|
642 |
+
|
643 |
+
by_block_group_and_size = "by_block_group_and_size"
|
644 |
+
"""
|
645 |
+
Like 'by_block_group' but `wte` and `ff_out` will be wrapped separately as well.
|
646 |
+
"""
|
647 |
+
|
648 |
+
size_based = "size_based"
|
649 |
+
"""
|
650 |
+
Used PyTorch's default size-based auto wrap policy.
|
651 |
+
"""
|
652 |
+
|
653 |
+
one_in_two = "one_in_two"
|
654 |
+
one_in_three = "one_in_three"
|
655 |
+
one_in_four = "one_in_four"
|
656 |
+
one_in_five = "one_in_five"
|
657 |
+
|
658 |
+
|
659 |
+
class FSDPPrecision(StrEnum):
|
660 |
+
pure = "pure"
|
661 |
+
"""
|
662 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, ``reduce_dtype``,
|
663 |
+
and ``buffer_dtype`` all set to the autocast precision data type.
|
664 |
+
"""
|
665 |
+
|
666 |
+
mixed = "mixed"
|
667 |
+
"""
|
668 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, and ``buffer_dtype``
|
669 |
+
set to the autocast precision data type, while ``reduce_dtype`` is set to fp32.
|
670 |
+
"""
|
671 |
+
|
672 |
+
|
673 |
+
@dataclass
|
674 |
+
class FSDPConfig(BaseConfig):
|
675 |
+
use_orig_params: bool = True
|
676 |
+
"""
|
677 |
+
This must be ``True`` if using ``compile`` or you want to track the parameter norm during training.
|
678 |
+
"""
|
679 |
+
|
680 |
+
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD
|
681 |
+
|
682 |
+
wrapping_strategy: Optional[FSDPWrapStrategy] = None
|
683 |
+
"""
|
684 |
+
The wrapping strategy to use. If ``None``, the default, the model is wrapped with a single top-level
|
685 |
+
FSDP instance.
|
686 |
+
"""
|
687 |
+
|
688 |
+
precision: FSDPPrecision = FSDPPrecision.pure
|
689 |
+
|
690 |
+
|
691 |
+
class CheckpointType(StrEnum):
|
692 |
+
sharded = "sharded"
|
693 |
+
unsharded = "unsharded"
|
694 |
+
sharded_ephemeral = "sharded_ephemeral"
|
695 |
+
|
696 |
+
|
697 |
+
class ShardedCheckpointerType(StrEnum):
|
698 |
+
torch_new = "torch_new"
|
699 |
+
torch_legacy = "torch_legacy"
|
700 |
+
local = "local"
|
701 |
+
|
702 |
+
|
703 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
704 |
+
whole_layer = "whole_layer"
|
705 |
+
"""
|
706 |
+
Checkpoint every transformer layer.
|
707 |
+
"""
|
708 |
+
|
709 |
+
one_in_two = "one_in_two"
|
710 |
+
"""
|
711 |
+
Checkpoint one in two transformer layers.
|
712 |
+
"""
|
713 |
+
|
714 |
+
one_in_three = "one_in_three"
|
715 |
+
"""
|
716 |
+
Checkpoint one in three transformer layers.
|
717 |
+
"""
|
718 |
+
|
719 |
+
one_in_four = "one_in_four"
|
720 |
+
"""
|
721 |
+
Checkpoint one in four transformer layers.
|
722 |
+
"""
|
723 |
+
|
724 |
+
two_in_three = "two_in_three"
|
725 |
+
"""
|
726 |
+
Checkpoint two out of every three transformer layers.
|
727 |
+
"""
|
728 |
+
|
729 |
+
three_in_four = "three_in_four"
|
730 |
+
"""
|
731 |
+
Checkpoint three out of four of every transformer layers.
|
732 |
+
"""
|
733 |
+
|
734 |
+
fine_grained = "fine_grained"
|
735 |
+
"""
|
736 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
737 |
+
"""
|
738 |
+
|
739 |
+
|
740 |
+
@dataclass
|
741 |
+
class TrainConfig(BaseConfig):
|
742 |
+
"""
|
743 |
+
OLMo training configuration.
|
744 |
+
"""
|
745 |
+
|
746 |
+
run_name: Optional[str] = None
|
747 |
+
"""
|
748 |
+
The name of the run.
|
749 |
+
"""
|
750 |
+
|
751 |
+
seed: int = 6198
|
752 |
+
"""
|
753 |
+
Used to seed all initial RNG states.
|
754 |
+
"""
|
755 |
+
|
756 |
+
epoch: Optional[int] = None
|
757 |
+
"""
|
758 |
+
Increment this when starting a new epoch.
|
759 |
+
"""
|
760 |
+
|
761 |
+
dry_run: bool = False
|
762 |
+
"""
|
763 |
+
If ``True``, don't actually train.
|
764 |
+
"""
|
765 |
+
|
766 |
+
model: ModelConfig = field(default_factory=ModelConfig)
|
767 |
+
"""
|
768 |
+
OLMo Model configuration.
|
769 |
+
"""
|
770 |
+
|
771 |
+
optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
|
772 |
+
"""
|
773 |
+
Optimizer configuration.
|
774 |
+
"""
|
775 |
+
|
776 |
+
scheduler: SchedulerConfig = field(default_factory=SchedulerConfig)
|
777 |
+
"""
|
778 |
+
Learning rate scheduler configuration.
|
779 |
+
"""
|
780 |
+
|
781 |
+
data: DataConfig = field(default_factory=DataConfig)
|
782 |
+
"""
|
783 |
+
Training data configuration.
|
784 |
+
"""
|
785 |
+
|
786 |
+
restore_dataloader: bool = True
|
787 |
+
"""
|
788 |
+
When restarting, restore the data loader to where it left off.
|
789 |
+
If you restarting in order to train on a different dataset, set this to ``False``.
|
790 |
+
"""
|
791 |
+
|
792 |
+
fast_forward_batches: Optional[int] = None
|
793 |
+
"""
|
794 |
+
When restarting, use this to fast-forward the dataloader beyond the last checkpoint.
|
795 |
+
This can be useful when restarting due to a loss spike in order to skip the data that
|
796 |
+
corresponded to the spike.
|
797 |
+
"""
|
798 |
+
|
799 |
+
evaluators: List[EvaluatorConfig] = field(default_factory=list)
|
800 |
+
"""
|
801 |
+
Evaluation configurations.
|
802 |
+
"""
|
803 |
+
|
804 |
+
eval_interval: int = 1000
|
805 |
+
"""
|
806 |
+
How often (in terms of batches) to run evaluations.
|
807 |
+
"""
|
808 |
+
|
809 |
+
tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
|
810 |
+
"""
|
811 |
+
Tokenizer configuration.
|
812 |
+
"""
|
813 |
+
|
814 |
+
save_folder: str = "./"
|
815 |
+
"""
|
816 |
+
The directory to save checkpoints to.
|
817 |
+
"""
|
818 |
+
|
819 |
+
remote_save_folder: Optional[str] = None
|
820 |
+
"""
|
821 |
+
A folder in a cloud bucket to upload saved checkpoints to.
|
822 |
+
"""
|
823 |
+
|
824 |
+
canceled_check_interval: int = 50
|
825 |
+
"""
|
826 |
+
How often (in batches) to check if the run has been canceled or reached its time limit.
|
827 |
+
"""
|
828 |
+
|
829 |
+
save_interval: int = 1000
|
830 |
+
"""
|
831 |
+
How often (in terms of steps) to save sharded training state checkpoints.
|
832 |
+
"""
|
833 |
+
|
834 |
+
save_interval_unsharded: Optional[int] = None
|
835 |
+
"""
|
836 |
+
How often (if at all) to save unsharded training state checkpoint.
|
837 |
+
For large models it can be costly to save these, so it usually makes sense to save
|
838 |
+
these less often than regular (sharded) training checkpoints.
|
839 |
+
"""
|
840 |
+
|
841 |
+
save_interval_ephemeral: Optional[int] = None
|
842 |
+
"""
|
843 |
+
How often (if at all) to save ephemeral sharded checkpoints. These checkpoints are the same
|
844 |
+
as those saved every `save_interval` except that at most only the most recent one of these is kept.
|
845 |
+
This is useful when you want to checkpoint often for restarts in case of failures, but don't
|
846 |
+
want to keep the majority of these checkpoints.
|
847 |
+
|
848 |
+
For example, suppose you want to keep your checkpoints at every 1000 steps, but you also want to save
|
849 |
+
a temporary checkpoint every 100 steps in case your job fails. In that case you would
|
850 |
+
set `save_interval=1000` and `save_interval_ephemeral=100`.
|
851 |
+
"""
|
852 |
+
|
853 |
+
save_num_checkpoints_to_keep: int = -1
|
854 |
+
"""
|
855 |
+
How many sharded checkpoints to keep.
|
856 |
+
"""
|
857 |
+
|
858 |
+
save_num_unsharded_checkpoints_to_keep: int = -1
|
859 |
+
"""
|
860 |
+
How many unsharded checkpoints to keep.
|
861 |
+
"""
|
862 |
+
|
863 |
+
save_overwrite: bool = False
|
864 |
+
"""
|
865 |
+
If ``True``, overwrite any conflicting checkpoint files.
|
866 |
+
"""
|
867 |
+
|
868 |
+
force_save_unsharded: bool = False
|
869 |
+
"""
|
870 |
+
Save an unsharded checkpoint before training (even during a dry run).
|
871 |
+
Use this option with `--load-path={PATH}` and `--dry_run` to convert a sharded
|
872 |
+
checkpoint into an unsharded checkpoint.
|
873 |
+
"""
|
874 |
+
|
875 |
+
no_pre_train_checkpoint: bool = False
|
876 |
+
"""
|
877 |
+
Skip saving pre-train checkpoint.
|
878 |
+
"""
|
879 |
+
|
880 |
+
load_path: Optional[str] = None
|
881 |
+
"""
|
882 |
+
The path to a training checkpoint to restore/resume from.
|
883 |
+
|
884 |
+
Note that you can make use of the "path.last_checkpoint" Omegaconfig YAML resolver here, which takes
|
885 |
+
a local or remote directory and resolves to the latest checkpoint (sharded or unsharded) in that directory.
|
886 |
+
For example,
|
887 |
+
|
888 |
+
```bash
|
889 |
+
--load_path='${path.last_checkpoint:s3://ai2-llm/checkpoints/7b/v1_5-mix-run-001}'
|
890 |
+
```
|
891 |
+
"""
|
892 |
+
|
893 |
+
load_path_sharded_checkpointer: Optional[ShardedCheckpointerType] = None
|
894 |
+
"""
|
895 |
+
The sharded checkpointer type to use to load the initial checkpoint from ``load_path``.
|
896 |
+
"""
|
897 |
+
|
898 |
+
reset_optimizer_state: bool = False
|
899 |
+
"""
|
900 |
+
When this is set, we restore the model from a checkpoint (if given), but we leave the optimizer uninitialized.
|
901 |
+
We also set a new learning rate schedule that does a new warmup, such that it intercepts the original learning
|
902 |
+
curve (according to the current learning rate schedule settings), and continues from there.
|
903 |
+
"""
|
904 |
+
|
905 |
+
reset_trainer_state: bool = False
|
906 |
+
"""
|
907 |
+
When this is set we don't restore the trainer state from a checkpoint.
|
908 |
+
"""
|
909 |
+
|
910 |
+
sharded_checkpointer: ShardedCheckpointerType = ShardedCheckpointerType.torch_legacy
|
911 |
+
"""
|
912 |
+
The name of the sharded checkpointer to use to save (sharded) checkpoints throughout training.
|
913 |
+
"""
|
914 |
+
|
915 |
+
new_style_checkpoints: Optional[bool] = None
|
916 |
+
"""
|
917 |
+
Deprecated. Use ``sharded_checkpointer`` instead.
|
918 |
+
"""
|
919 |
+
|
920 |
+
max_duration: Union[int, str] = 10000
|
921 |
+
"""
|
922 |
+
How long to train for.
|
923 |
+
|
924 |
+
If specified without a unit (the default), the units are assumed to be steps.
|
925 |
+
You can also specify this in terms of tokens, for example: `max_duration="2e12T"` means train until
|
926 |
+
2 trillion tokens.
|
927 |
+
"""
|
928 |
+
|
929 |
+
global_train_batch_size: int = 512
|
930 |
+
"""
|
931 |
+
The effective global batch size.
|
932 |
+
"""
|
933 |
+
|
934 |
+
device_train_batch_size: Optional[int] = None # calculated automatically
|
935 |
+
"""
|
936 |
+
Don't set this manually. This will be set to ``global_train_batch_size // world_size``.
|
937 |
+
"""
|
938 |
+
|
939 |
+
device_train_microbatch_size: int = 16
|
940 |
+
"""
|
941 |
+
The number of instances passed to the model in a single forward-backward pass. You should set
|
942 |
+
this as large as you can based on available GPU memory.
|
943 |
+
"""
|
944 |
+
|
945 |
+
device_eval_batch_size: int = 16
|
946 |
+
"""
|
947 |
+
The number of evaluation instances passed to the model in a single forward pass on each device.
|
948 |
+
"""
|
949 |
+
|
950 |
+
eval_subset_num_batches: int = -1
|
951 |
+
"""
|
952 |
+
The number of batches to use for downstream evaluation from each dataset.
|
953 |
+
"""
|
954 |
+
|
955 |
+
eval_on_load: bool = False
|
956 |
+
"""
|
957 |
+
When resuming from a checkpoint, run the evaluation loop right away.
|
958 |
+
"""
|
959 |
+
|
960 |
+
device_train_grad_accum: Optional[int] = None # calculated automatically
|
961 |
+
"""
|
962 |
+
Don't set this manually. This will be set to ``device_train_batch_size // device_train_microbatch_size``.
|
963 |
+
"""
|
964 |
+
|
965 |
+
max_grad_norm: Optional[float] = None
|
966 |
+
"""
|
967 |
+
Clip gradient norms to this value if set.
|
968 |
+
"""
|
969 |
+
|
970 |
+
max_grad_norm_ratio: Optional[float] = None
|
971 |
+
"""
|
972 |
+
If set, gradient norms will be clipped to `max_grad_norm_ratio * exp_avg(norm(grad))`.
|
973 |
+
This takes priority over `max_grad_norm` when set.
|
974 |
+
"""
|
975 |
+
|
976 |
+
precision: Optional[str] = None
|
977 |
+
"""
|
978 |
+
Precision to train with (e.g. "amp_bf16", "amp_fp16", or "fp32").
|
979 |
+
"""
|
980 |
+
|
981 |
+
wandb: Optional[WandbConfig] = None
|
982 |
+
"""
|
983 |
+
Weights & Biases configuration.
|
984 |
+
"""
|
985 |
+
|
986 |
+
speed_monitor: SpeedMonitorConfig = field(default_factory=SpeedMonitorConfig)
|
987 |
+
"""
|
988 |
+
Speed monitor configuration.
|
989 |
+
"""
|
990 |
+
|
991 |
+
console_log_interval: int = 1
|
992 |
+
"""
|
993 |
+
How often to log to the console.
|
994 |
+
"""
|
995 |
+
|
996 |
+
compile: Optional[CompilerConfig] = None
|
997 |
+
"""
|
998 |
+
Settings for compiling the model with ``torch.compile()``.
|
999 |
+
"""
|
1000 |
+
|
1001 |
+
fsdp: FSDPConfig = field(default_factory=FSDPConfig)
|
1002 |
+
"""
|
1003 |
+
Fully sharded data parallel settings.
|
1004 |
+
"""
|
1005 |
+
|
1006 |
+
softmax_auxiliary_loss: bool = False
|
1007 |
+
"""
|
1008 |
+
If ``True``, we add the auxiliary loss function from PaLM that encourages the softmax
|
1009 |
+
normalizing term to be close to 0.
|
1010 |
+
"""
|
1011 |
+
|
1012 |
+
time_limit: Optional[float] = 60 * 60 * 47.5
|
1013 |
+
"""
|
1014 |
+
The maximum amount of time to train for before saving a checkpoint and ending early.
|
1015 |
+
On LUMI we have 48 hours max per job, so we default to just under 48 hours to give us time
|
1016 |
+
to write out a final checkpoint.
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
extra_steps_after_cancel: int = 10
|
1020 |
+
"""
|
1021 |
+
Under certain conditions when a run is canceled we train for a few extra steps after saving
|
1022 |
+
the final checkpoint so that when the run is restarted from the latest checkpoint we have some
|
1023 |
+
overlap in metrics.
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
early_stopping_factor: Optional[float] = None
|
1027 |
+
|
1028 |
+
save_data_indices: bool = True
|
1029 |
+
"""
|
1030 |
+
Save training data indices from each batch for each worker.
|
1031 |
+
"""
|
1032 |
+
|
1033 |
+
python_profiling: bool = False
|
1034 |
+
"""
|
1035 |
+
Whether to run the Python profiler on batches 6, 7, and 8.
|
1036 |
+
"""
|
1037 |
+
|
1038 |
+
torch_profiling: bool = False
|
1039 |
+
"""
|
1040 |
+
Whether to run the PyTorch profiler on batches 6, 7, and 8.
|
1041 |
+
"""
|
1042 |
+
|
1043 |
+
stop_at: Optional[int] = None
|
1044 |
+
"""
|
1045 |
+
Stop at a specific step.
|
1046 |
+
"""
|
1047 |
+
|
1048 |
+
stop_after: Optional[int] = None
|
1049 |
+
"""
|
1050 |
+
Stop after a specific number of steps.
|
1051 |
+
"""
|
1052 |
+
|
1053 |
+
activation_checkpointing: Optional[ActivationCheckpointingStrategy] = None
|
1054 |
+
"""
|
1055 |
+
The activation checkpointing strategy to use.
|
1056 |
+
"""
|
1057 |
+
|
1058 |
+
fused_loss: Optional[bool] = None
|
1059 |
+
"""
|
1060 |
+
Whether to use the fused CE loss function from `flash-attn`.
|
1061 |
+
"""
|
1062 |
+
|
1063 |
+
@property
|
1064 |
+
def autocast_precision(self) -> torch.dtype:
|
1065 |
+
if self.precision == "amp_bf16":
|
1066 |
+
return torch.bfloat16
|
1067 |
+
elif self.precision == "amp_fp16":
|
1068 |
+
return torch.float16
|
1069 |
+
elif self.precision == "fp32":
|
1070 |
+
return torch.float32
|
1071 |
+
else:
|
1072 |
+
raise ValueError(f"Unexpected precision type '{self.precision}'")
|
1073 |
+
|
1074 |
+
@property
|
1075 |
+
def fsdp_precision(self) -> MixedPrecision:
|
1076 |
+
if self.fsdp.precision == FSDPPrecision.pure:
|
1077 |
+
return MixedPrecision(
|
1078 |
+
param_dtype=self.autocast_precision,
|
1079 |
+
reduce_dtype=self.autocast_precision,
|
1080 |
+
buffer_dtype=self.autocast_precision,
|
1081 |
+
)
|
1082 |
+
elif self.fsdp.precision == FSDPPrecision.mixed:
|
1083 |
+
return MixedPrecision(
|
1084 |
+
param_dtype=self.autocast_precision,
|
1085 |
+
reduce_dtype=torch.float32,
|
1086 |
+
buffer_dtype=self.autocast_precision,
|
1087 |
+
)
|
1088 |
+
else:
|
1089 |
+
raise NotImplementedError(f"{self.fsdp.precision}")
|
1090 |
+
|
1091 |
+
@classmethod
|
1092 |
+
def update_legacy_settings(cls, config: D) -> D:
|
1093 |
+
new_config = config.copy()
|
1094 |
+
if om.is_dict(new_config):
|
1095 |
+
assert isinstance(new_config, DictConfig)
|
1096 |
+
|
1097 |
+
if hasattr(new_config, "activation_checkpointing"):
|
1098 |
+
if new_config.activation_checkpointing is False:
|
1099 |
+
new_config.activation_checkpointing = None
|
1100 |
+
if new_config.activation_checkpointing is True:
|
1101 |
+
new_config.activation_checkpointing = ActivationCheckpointingStrategy.whole_layer
|
1102 |
+
|
1103 |
+
if hasattr(new_config, "optimizer"):
|
1104 |
+
new_config.optimizer = OptimizerConfig.update_legacy_settings(new_config.optimizer)
|
1105 |
+
|
1106 |
+
return new_config
|