metadata
language: en
license: apache-2.0
SQFT Fine-tuned Model: sqft-phi-3-mini-4k-50-gptq-math-heu-adapter
- Base Model: IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
- Sparsity: 50%
- Quantization: INT4 (GPTQ)
- Finetune Method: SQFT
- Finetune data: 10K instruction-following math reasoning training dataset from LLM-Adapters (math_10k.json)
- Sub-Adapter: Heuristic
Evaluation
git clone https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.git haaml && cd haaml/SQFT
BASE_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-base-gptq
ADAPTER_MODEL_NAME=IntelLabs/sqft-phi-3-mini-4k-50-gptq-math-heu-adapter
OUTPUT_DIR=./results
python eval/evaluate_math.py --base_model_path ${BASE_MODEL_NAME} --adapter_model_path ${ADAPTER_MODEL_NAME} --output_dir ${OUTPUT_DIR}
Refer to our repo for the environment information to run this command.
Model Sources
- Repository: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT
- Paper: SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Citation
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={},
year={2024}
}
License
Apache-2.0