fuzzy-mittenz's picture
Update README.md
abaf30e verified
|
raw
history blame
2.88 kB
metadata
license: apache-2.0
base_model:
  - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B
  - Qwen/Qwen2.5-Coder-7B-Instruct
language:
  - en
pipeline_tag: text-generation
library_name: transformers
tags:
  - code
  - qwen-coder
  - finetune
  - llama-cpp
  - gguf-my-repo
datasets:
  - IntelligentEstate/The_Key

TEST

IntelligentEstate/ReasoningRabbit_Q2.5-Cd-7B-IQ4_XS-GGUF

This model is primarily for use with GPT4ALL and has reasoning capabilities similar to QwQ/o1/03 it was converted to GGUF format using "THE_KEY" dataset for importace matrix Qantization from WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

white rabbit2.png

Using with GPT4ALL

after installing GPT4ALL from Nomic download their Reasoner v1 model and familiarize yourself with it, find the storage location under settings and place(only) this GGUF file in the same file as reasoner v1 apply the Jinja template in the "Jinja reasoner" file as well as the chat message above the template adjusting as needed. Enjoy

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo fuzzy-mittenz/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B-IQ4_XS-GGUF --hf-file whiterabbitneo-2.5-qwen-2.5-coder-7b-iq4_xs-imat.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo fuzzy-mittenz/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B-IQ4_XS-GGUF --hf-file whiterabbitneo-2.5-qwen-2.5-coder-7b-iq4_xs-imat.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo fuzzy-mittenz/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B-IQ4_XS-GGUF --hf-file whiterabbitneo-2.5-qwen-2.5-coder-7b-iq4_xs-imat.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo fuzzy-mittenz/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B-IQ4_XS-GGUF --hf-file whiterabbitneo-2.5-qwen-2.5-coder-7b-iq4_xs-imat.gguf -c 2048