IrohXu's picture
update README.md
e189fcb
|
raw
history blame
3.65 kB

Stable Diffusion 3 Inpainting Pipeline

This is the implementation of Stable Diffusion 3 Inpainting Pipeline.

input image input mask image output

Please ensure that the version of diffusers >= 0.29.1

Model

Stable Diffusion 3 Medium is a Multimodal Diffusion Transformer (MMDiT) text-to-image model that features greatly improved performance in image quality, typography, complex prompt understanding, and resource-efficiency.

For more technical details, please refer to the Research paper.

Please note: this model is released under the Stability Non-Commercial Research Community License. For a Creator License or an Enterprise License visit Stability.ai or contact us for commercial licensing details.

Model Description

  • Developed by: Stability AI
  • Model type: MMDiT text-to-image generative model
  • Model Description: This is a model that can be used to generate images based on text prompts. It is a Multimodal Diffusion Transformer (https://arxiv.org/abs/2403.03206) that uses three fixed, pretrained text encoders (OpenCLIP-ViT/G, CLIP-ViT/L and T5-xxl)

Demo

Make sure you upgrade to the latest version of diffusers: pip install -U diffusers. And then you can run:

import torch
from torchvision import transforms

from pipeline_stable_diffusion_3_inpaint import StableDiffusion3InpaintPipeline
from diffusers.utils import load_image

def preprocess_image(image):
    image = image.convert("RGB")
    image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
    image = transforms.ToTensor()(image)
    image = image.unsqueeze(0).to("cuda")
    return image

def preprocess_mask(mask):
    mask = mask.convert("L")
    mask = transforms.CenterCrop((mask.size[1] // 64 * 64, mask.size[0] // 64 * 64))(mask)
    mask = transforms.ToTensor()(mask)
    mask = mask.to("cuda")
    return mask

pipe = StableDiffusion3InpaintPipeline.from_pretrained(
    "stabilityai/stable-diffusion-3-medium-diffusers",
    torch_dtype=torch.float16,
).to("cuda")

prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
source_image = load_image(
    "./overture-creations-5sI6fQgYIuo.png"
)
source = preprocess_image(source_image)
mask = preprocess_mask(
    load_image(
        "./overture-creations-5sI6fQgYIuo_mask.png"
    )
)

image = pipe(
    prompt=prompt,
    image=source,
    mask_image=1-mask,
    height=1024,
    width=1024,
    num_inference_steps=28,
    guidance_scale=7.0,
    strength=0.6,
).images[0]

image.save("output.png")