|
--- |
|
tags: |
|
- spacy |
|
- token-classification |
|
language: |
|
- en |
|
model-index: |
|
- name: en_legal_ner_pipeline |
|
results: |
|
- task: |
|
name: NER |
|
type: token-classification |
|
metrics: |
|
- name: NER Precision |
|
type: precision |
|
value: 0.7563683867 |
|
- name: NER Recall |
|
type: recall |
|
value: 0.7121771218 |
|
- name: NER F Score |
|
type: f_score |
|
value: 0.7336078556 |
|
--- |
|
| Feature | Description | |
|
| --- | --- | |
|
| **Name** | `en_legal_ner_pipeline` | |
|
| **Version** | `0.0.0` | |
|
| **spaCy** | `>=3.7.6,<3.8.0` | |
|
| **Default Pipeline** | `tok2vec`, `ner` | |
|
| **Components** | `tok2vec`, `ner` | |
|
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | |
|
| **Sources** | n/a | |
|
| **License** | n/a | |
|
| **Author** | [n/a]() | |
|
|
|
### Label Scheme |
|
|
|
<details> |
|
|
|
<summary>View label scheme (14 labels for 1 components)</summary> |
|
|
|
| Component | Labels | |
|
| --- | --- | |
|
| **`ner`** | `CASE_NUMBER`, `COURT`, `DATE`, `GPE`, `JUDGE`, `LAWYER`, `ORG`, `OTHER_PERSON`, `PETITIONER`, `PRECEDENT`, `PROVISION`, `RESPONDENT`, `STATUTE`, `WITNESS` | |
|
|
|
</details> |
|
|
|
### Accuracy |
|
|
|
| Type | Score | |
|
| --- | --- | |
|
| `ENTS_F` | 73.36 | |
|
| `ENTS_P` | 75.64 | |
|
| `ENTS_R` | 71.22 | |
|
| `TOK2VEC_LOSS` | 488439.50 | |
|
| `NER_LOSS` | 548698.80 | |