vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SUR
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5352
- Accuracy: 0.8542
- Precision: 0.8593
- Recall: 0.8542
- F1: 0.8516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3658 | 0.3333 | 100 | 0.7426 | 0.7017 | 0.6844 | 0.7017 | 0.6699 |
0.3256 | 0.6667 | 200 | 0.7536 | 0.7608 | 0.8199 | 0.7608 | 0.7638 |
0.0727 | 1.0 | 300 | 0.5352 | 0.8542 | 0.8593 | 0.8542 | 0.8516 |
0.0553 | 1.3333 | 400 | 0.5903 | 0.8575 | 0.8636 | 0.8575 | 0.8547 |
0.116 | 1.6667 | 500 | 0.8102 | 0.8075 | 0.8478 | 0.8075 | 0.8036 |
0.1034 | 2.0 | 600 | 0.9591 | 0.79 | 0.8360 | 0.79 | 0.7929 |
0.0921 | 2.3333 | 700 | 1.0530 | 0.7917 | 0.8153 | 0.7917 | 0.7890 |
0.0845 | 2.6667 | 800 | 0.8513 | 0.81 | 0.8188 | 0.81 | 0.8074 |
0.0027 | 3.0 | 900 | 1.1166 | 0.7883 | 0.8020 | 0.7883 | 0.7852 |
0.0046 | 3.3333 | 1000 | 1.0594 | 0.8075 | 0.8496 | 0.8075 | 0.7994 |
0.1194 | 3.6667 | 1100 | 1.1294 | 0.7992 | 0.8259 | 0.7992 | 0.7985 |
0.0865 | 4.0 | 1200 | 1.0208 | 0.7908 | 0.8241 | 0.7908 | 0.7874 |
0.0015 | 4.3333 | 1300 | 0.6127 | 0.8783 | 0.8875 | 0.8783 | 0.8778 |
0.0086 | 4.6667 | 1400 | 0.9398 | 0.8383 | 0.8601 | 0.8383 | 0.8352 |
0.0016 | 5.0 | 1500 | 0.9671 | 0.835 | 0.8414 | 0.835 | 0.8361 |
0.0031 | 5.3333 | 1600 | 0.7669 | 0.8425 | 0.8480 | 0.8425 | 0.8379 |
0.0015 | 5.6667 | 1700 | 1.6634 | 0.7092 | 0.7774 | 0.7092 | 0.6878 |
0.0011 | 6.0 | 1800 | 0.9625 | 0.8517 | 0.8701 | 0.8517 | 0.8464 |
0.0015 | 6.3333 | 1900 | 0.9576 | 0.8392 | 0.8558 | 0.8392 | 0.8367 |
0.0009 | 6.6667 | 2000 | 0.9355 | 0.84 | 0.8615 | 0.84 | 0.8390 |
0.0629 | 7.0 | 2100 | 0.8580 | 0.8508 | 0.8527 | 0.8508 | 0.8490 |
0.0446 | 7.3333 | 2200 | 0.7906 | 0.8783 | 0.8798 | 0.8783 | 0.8759 |
0.0007 | 7.6667 | 2300 | 0.9514 | 0.8283 | 0.8405 | 0.8283 | 0.8258 |
0.0006 | 8.0 | 2400 | 1.0413 | 0.8317 | 0.8407 | 0.8317 | 0.8298 |
0.0006 | 8.3333 | 2500 | 1.0492 | 0.8342 | 0.8427 | 0.8342 | 0.8324 |
0.0478 | 8.6667 | 2600 | 0.7952 | 0.8667 | 0.8701 | 0.8667 | 0.8664 |
0.0006 | 9.0 | 2700 | 0.8355 | 0.8708 | 0.8827 | 0.8708 | 0.8689 |
0.0004 | 9.3333 | 2800 | 1.0021 | 0.8508 | 0.8675 | 0.8508 | 0.8501 |
0.0004 | 9.6667 | 2900 | 1.0899 | 0.84 | 0.8573 | 0.84 | 0.8378 |
0.0004 | 10.0 | 3000 | 0.9897 | 0.8533 | 0.8614 | 0.8533 | 0.8505 |
0.0007 | 10.3333 | 3100 | 1.4134 | 0.8008 | 0.8407 | 0.8008 | 0.7956 |
0.0004 | 10.6667 | 3200 | 1.2195 | 0.8225 | 0.8459 | 0.8225 | 0.8212 |
0.0003 | 11.0 | 3300 | 1.2032 | 0.8242 | 0.8459 | 0.8242 | 0.8230 |
0.0003 | 11.3333 | 3400 | 1.1995 | 0.8267 | 0.8479 | 0.8267 | 0.8255 |
0.0003 | 11.6667 | 3500 | 1.1979 | 0.825 | 0.8453 | 0.825 | 0.8239 |
0.0003 | 12.0 | 3600 | 1.1959 | 0.8258 | 0.8461 | 0.8258 | 0.8248 |
0.0003 | 12.3333 | 3700 | 1.1960 | 0.8275 | 0.8473 | 0.8275 | 0.8264 |
0.0003 | 12.6667 | 3800 | 1.1960 | 0.8275 | 0.8473 | 0.8275 | 0.8264 |
0.0003 | 13.0 | 3900 | 1.1972 | 0.8275 | 0.8473 | 0.8275 | 0.8264 |
0.0003 | 13.3333 | 4000 | 1.1986 | 0.8283 | 0.8479 | 0.8283 | 0.8273 |
0.0003 | 13.6667 | 4100 | 1.1993 | 0.8292 | 0.8484 | 0.8292 | 0.8280 |
0.0003 | 14.0 | 4200 | 1.1999 | 0.8292 | 0.8484 | 0.8292 | 0.8280 |
0.0002 | 14.3333 | 4300 | 1.2012 | 0.8292 | 0.8484 | 0.8292 | 0.8280 |
0.0002 | 14.6667 | 4400 | 1.2014 | 0.8292 | 0.8484 | 0.8292 | 0.8280 |
0.0002 | 15.0 | 4500 | 1.2016 | 0.8292 | 0.8484 | 0.8292 | 0.8280 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SUR
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.854
- Precision on imagefoldertest set self-reported0.859
- Recall on imagefoldertest set self-reported0.854
- F1 on imagefoldertest set self-reported0.852