vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3420
- Accuracy: 0.9192
- Precision: 0.9216
- Recall: 0.9192
- F1: 0.9190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2755 | 0.3333 | 100 | 0.7287 | 0.7708 | 0.7925 | 0.7708 | 0.7574 |
0.1543 | 0.6667 | 200 | 0.4145 | 0.8708 | 0.8855 | 0.8708 | 0.8705 |
0.0739 | 1.0 | 300 | 0.5222 | 0.8467 | 0.8812 | 0.8467 | 0.8463 |
0.0491 | 1.3333 | 400 | 0.5282 | 0.8408 | 0.8582 | 0.8408 | 0.8427 |
0.0666 | 1.6667 | 500 | 0.6483 | 0.8592 | 0.8691 | 0.8592 | 0.8596 |
0.078 | 2.0 | 600 | 0.6382 | 0.8592 | 0.8602 | 0.8592 | 0.8580 |
0.011 | 2.3333 | 700 | 0.8982 | 0.8217 | 0.8582 | 0.8217 | 0.8191 |
0.0499 | 2.6667 | 800 | 0.8965 | 0.8475 | 0.8902 | 0.8475 | 0.8470 |
0.0035 | 3.0 | 900 | 0.8278 | 0.8392 | 0.8674 | 0.8392 | 0.8398 |
0.0707 | 3.3333 | 1000 | 0.3420 | 0.9192 | 0.9216 | 0.9192 | 0.9190 |
0.003 | 3.6667 | 1100 | 0.5066 | 0.88 | 0.8971 | 0.88 | 0.8810 |
0.0587 | 4.0 | 1200 | 0.6408 | 0.8817 | 0.8882 | 0.8817 | 0.8825 |
0.0018 | 4.3333 | 1300 | 0.6582 | 0.8692 | 0.8759 | 0.8692 | 0.8693 |
0.1528 | 4.6667 | 1400 | 0.6080 | 0.8758 | 0.9034 | 0.8758 | 0.8728 |
0.0266 | 5.0 | 1500 | 0.5895 | 0.8708 | 0.8943 | 0.8708 | 0.8688 |
0.0019 | 5.3333 | 1600 | 0.4804 | 0.8967 | 0.9022 | 0.8967 | 0.8966 |
0.0011 | 5.6667 | 1700 | 0.6821 | 0.885 | 0.8926 | 0.885 | 0.8813 |
0.0009 | 6.0 | 1800 | 0.6932 | 0.8683 | 0.8733 | 0.8683 | 0.8645 |
0.0299 | 6.3333 | 1900 | 0.7787 | 0.8667 | 0.8843 | 0.8667 | 0.8663 |
0.0007 | 6.6667 | 2000 | 0.5522 | 0.9042 | 0.9057 | 0.9042 | 0.9027 |
0.0007 | 7.0 | 2100 | 0.5208 | 0.9067 | 0.9096 | 0.9067 | 0.9072 |
0.0006 | 7.3333 | 2200 | 0.5342 | 0.905 | 0.9076 | 0.905 | 0.9053 |
0.0006 | 7.6667 | 2300 | 0.7917 | 0.8517 | 0.8734 | 0.8517 | 0.8516 |
0.0008 | 8.0 | 2400 | 0.9942 | 0.85 | 0.8666 | 0.85 | 0.8483 |
0.0005 | 8.3333 | 2500 | 0.7367 | 0.8842 | 0.8853 | 0.8842 | 0.8815 |
0.0075 | 8.6667 | 2600 | 0.6106 | 0.8833 | 0.8934 | 0.8833 | 0.8842 |
0.0007 | 9.0 | 2700 | 0.6440 | 0.8817 | 0.8837 | 0.8817 | 0.8781 |
0.0005 | 9.3333 | 2800 | 0.5905 | 0.905 | 0.9065 | 0.905 | 0.9047 |
0.0004 | 9.6667 | 2900 | 0.5889 | 0.9033 | 0.9046 | 0.9033 | 0.9030 |
0.0004 | 10.0 | 3000 | 0.7286 | 0.89 | 0.8981 | 0.89 | 0.8889 |
0.0003 | 10.3333 | 3100 | 0.8314 | 0.875 | 0.8883 | 0.875 | 0.8754 |
0.0003 | 10.6667 | 3200 | 0.7812 | 0.8808 | 0.8902 | 0.8808 | 0.8802 |
0.0003 | 11.0 | 3300 | 0.7806 | 0.8817 | 0.8908 | 0.8817 | 0.8811 |
0.0003 | 11.3333 | 3400 | 0.7808 | 0.8825 | 0.8910 | 0.8825 | 0.8821 |
0.0003 | 11.6667 | 3500 | 0.5853 | 0.9025 | 0.9026 | 0.9025 | 0.9023 |
0.0003 | 12.0 | 3600 | 0.8102 | 0.88 | 0.8876 | 0.88 | 0.8804 |
0.0003 | 12.3333 | 3700 | 0.8667 | 0.8742 | 0.8802 | 0.8742 | 0.8744 |
0.0003 | 12.6667 | 3800 | 0.8161 | 0.8783 | 0.8838 | 0.8783 | 0.8786 |
0.0003 | 13.0 | 3900 | 0.8035 | 0.88 | 0.8854 | 0.88 | 0.8803 |
0.0003 | 13.3333 | 4000 | 0.7989 | 0.88 | 0.8854 | 0.88 | 0.8803 |
0.0002 | 13.6667 | 4100 | 0.8006 | 0.88 | 0.8850 | 0.88 | 0.8803 |
0.0002 | 14.0 | 4200 | 0.8021 | 0.88 | 0.8850 | 0.88 | 0.8803 |
0.0002 | 14.3333 | 4300 | 0.8028 | 0.8808 | 0.8858 | 0.8808 | 0.8811 |
0.0002 | 14.6667 | 4400 | 0.8035 | 0.8808 | 0.8858 | 0.8808 | 0.8811 |
0.0002 | 15.0 | 4500 | 0.8036 | 0.8808 | 0.8858 | 0.8808 | 0.8811 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.919
- Precision on imagefoldertest set self-reported0.922
- Recall on imagefoldertest set self-reported0.919
- F1 on imagefoldertest set self-reported0.919