vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SEC
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1421
- Accuracy: 0.97
- Precision: 0.9711
- Recall: 0.97
- F1: 0.9700
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1782 | 0.3333 | 100 | 1.5537 | 0.59 | 0.6419 | 0.59 | 0.5106 |
0.0982 | 0.6667 | 200 | 1.5012 | 0.6658 | 0.6563 | 0.6658 | 0.6262 |
0.1236 | 1.0 | 300 | 0.3710 | 0.895 | 0.9085 | 0.895 | 0.8958 |
0.0078 | 1.3333 | 400 | 1.4374 | 0.6992 | 0.7299 | 0.6992 | 0.6613 |
0.0049 | 1.6667 | 500 | 0.4037 | 0.9058 | 0.9181 | 0.9058 | 0.9064 |
0.0047 | 2.0 | 600 | 1.7908 | 0.675 | 0.7138 | 0.675 | 0.6297 |
0.0032 | 2.3333 | 700 | 1.1430 | 0.8233 | 0.8831 | 0.8233 | 0.7906 |
0.0027 | 2.6667 | 800 | 1.1627 | 0.735 | 0.8254 | 0.735 | 0.7005 |
0.0018 | 3.0 | 900 | 0.8254 | 0.8292 | 0.8864 | 0.8292 | 0.8050 |
0.0016 | 3.3333 | 1000 | 1.2364 | 0.7625 | 0.8527 | 0.7625 | 0.7462 |
0.0027 | 3.6667 | 1100 | 0.2785 | 0.9267 | 0.9359 | 0.9267 | 0.9271 |
0.001 | 4.0 | 1200 | 0.6703 | 0.8775 | 0.9013 | 0.8775 | 0.8784 |
0.001 | 4.3333 | 1300 | 0.8848 | 0.8458 | 0.8925 | 0.8458 | 0.8397 |
0.0009 | 4.6667 | 1400 | 0.3603 | 0.9183 | 0.9325 | 0.9183 | 0.9199 |
0.0007 | 5.0 | 1500 | 0.4274 | 0.9183 | 0.9325 | 0.9183 | 0.9144 |
0.0006 | 5.3333 | 1600 | 0.3995 | 0.9233 | 0.9368 | 0.9233 | 0.9200 |
0.0005 | 5.6667 | 1700 | 0.3866 | 0.9258 | 0.9384 | 0.9258 | 0.9229 |
0.0012 | 6.0 | 1800 | 0.5027 | 0.9083 | 0.9401 | 0.9083 | 0.9110 |
0.0004 | 6.3333 | 1900 | 0.1421 | 0.97 | 0.9711 | 0.97 | 0.9700 |
0.0004 | 6.6667 | 2000 | 0.1475 | 0.97 | 0.9713 | 0.97 | 0.9700 |
0.0004 | 7.0 | 2100 | 0.1484 | 0.9708 | 0.9720 | 0.9708 | 0.9709 |
0.0003 | 7.3333 | 2200 | 0.1502 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0003 | 7.6667 | 2300 | 0.1530 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0003 | 8.0 | 2400 | 0.1539 | 0.9708 | 0.9720 | 0.9708 | 0.9709 |
0.0003 | 8.3333 | 2500 | 0.1565 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0003 | 8.6667 | 2600 | 0.1574 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 9.0 | 2700 | 0.1592 | 0.9717 | 0.9727 | 0.9717 | 0.9717 |
0.0002 | 9.3333 | 2800 | 0.1610 | 0.9717 | 0.9727 | 0.9717 | 0.9717 |
0.0002 | 9.6667 | 2900 | 0.1626 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 10.0 | 3000 | 0.1636 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 10.3333 | 3100 | 0.1645 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 10.6667 | 3200 | 0.1657 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 11.0 | 3300 | 0.1669 | 0.9708 | 0.9719 | 0.9708 | 0.9708 |
0.0002 | 11.3333 | 3400 | 0.1682 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0002 | 11.6667 | 3500 | 0.1691 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0002 | 12.0 | 3600 | 0.1697 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0002 | 12.3333 | 3700 | 0.1704 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0002 | 12.6667 | 3800 | 0.1709 | 0.97 | 0.9712 | 0.97 | 0.9700 |
0.0001 | 13.0 | 3900 | 0.1715 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 13.3333 | 4000 | 0.1721 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 13.6667 | 4100 | 0.1727 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 14.0 | 4200 | 0.1730 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 14.3333 | 4300 | 0.1731 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 14.6667 | 4400 | 0.1733 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
0.0001 | 15.0 | 4500 | 0.1734 | 0.9692 | 0.9704 | 0.9692 | 0.9692 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SEC
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.970
- Precision on imagefoldertest set self-reported0.971
- Recall on imagefoldertest set self-reported0.970
- F1 on imagefoldertest set self-reported0.970