vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX-finetune
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3739
- Accuracy: 0.9025
- Precision: 0.9065
- Recall: 0.9025
- F1: 0.9011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.1672 | 0.3333 | 100 | 0.3739 | 0.9025 | 0.9065 | 0.9025 | 0.9011 |
0.1364 | 0.6667 | 200 | 0.7118 | 0.7879 | 0.8371 | 0.7879 | 0.7837 |
0.0603 | 1.0 | 300 | 0.6678 | 0.8275 | 0.8502 | 0.8275 | 0.8257 |
0.0532 | 1.3333 | 400 | 0.6051 | 0.8596 | 0.8785 | 0.8596 | 0.8578 |
0.0195 | 1.6667 | 500 | 0.6989 | 0.8263 | 0.8493 | 0.8263 | 0.8278 |
0.0284 | 2.0 | 600 | 0.7349 | 0.8342 | 0.8608 | 0.8342 | 0.8366 |
0.0145 | 2.3333 | 700 | 0.7102 | 0.8662 | 0.8741 | 0.8662 | 0.8636 |
0.0142 | 2.6667 | 800 | 0.7562 | 0.8583 | 0.8652 | 0.8583 | 0.8554 |
0.0327 | 3.0 | 900 | 0.6251 | 0.87 | 0.8830 | 0.87 | 0.8697 |
0.0014 | 3.3333 | 1000 | 0.6991 | 0.8571 | 0.8772 | 0.8571 | 0.8535 |
0.0015 | 3.6667 | 1100 | 0.4318 | 0.9075 | 0.9117 | 0.9075 | 0.9077 |
0.0022 | 4.0 | 1200 | 0.7833 | 0.8592 | 0.8752 | 0.8592 | 0.8583 |
0.0049 | 4.3333 | 1300 | 0.4950 | 0.9054 | 0.9088 | 0.9054 | 0.9049 |
0.0125 | 4.6667 | 1400 | 0.5476 | 0.8879 | 0.8898 | 0.8879 | 0.8873 |
0.0163 | 5.0 | 1500 | 0.4917 | 0.9096 | 0.9099 | 0.9096 | 0.9087 |
0.003 | 5.3333 | 1600 | 0.8279 | 0.8612 | 0.8665 | 0.8612 | 0.8586 |
0.0027 | 5.6667 | 1700 | 0.9960 | 0.8242 | 0.8615 | 0.8242 | 0.8141 |
0.0015 | 6.0 | 1800 | 0.7634 | 0.8621 | 0.8865 | 0.8621 | 0.8611 |
0.0006 | 6.3333 | 1900 | 0.5313 | 0.9 | 0.9068 | 0.9 | 0.8991 |
0.0005 | 6.6667 | 2000 | 0.4222 | 0.9225 | 0.9243 | 0.9225 | 0.9222 |
0.0322 | 7.0 | 2100 | 0.5260 | 0.9067 | 0.9115 | 0.9067 | 0.9063 |
0.0106 | 7.3333 | 2200 | 0.5679 | 0.8817 | 0.8903 | 0.8817 | 0.8819 |
0.0006 | 7.6667 | 2300 | 0.7876 | 0.8517 | 0.8828 | 0.8517 | 0.8532 |
0.0004 | 8.0 | 2400 | 0.5605 | 0.8992 | 0.9061 | 0.8992 | 0.8987 |
0.0003 | 8.3333 | 2500 | 0.5620 | 0.9021 | 0.9084 | 0.9021 | 0.9016 |
0.0003 | 8.6667 | 2600 | 0.5725 | 0.9004 | 0.9071 | 0.9004 | 0.9001 |
0.0002 | 9.0 | 2700 | 0.5745 | 0.9008 | 0.9074 | 0.9008 | 0.9006 |
0.0002 | 9.3333 | 2800 | 0.5751 | 0.9012 | 0.9074 | 0.9012 | 0.9009 |
0.0002 | 9.6667 | 2900 | 0.5769 | 0.9017 | 0.9078 | 0.9017 | 0.9013 |
0.0002 | 10.0 | 3000 | 0.5792 | 0.9012 | 0.9075 | 0.9012 | 0.9009 |
0.0002 | 10.3333 | 3100 | 0.5812 | 0.9017 | 0.9078 | 0.9017 | 0.9014 |
0.0002 | 10.6667 | 3200 | 0.5832 | 0.9017 | 0.9078 | 0.9017 | 0.9014 |
0.0002 | 11.0 | 3300 | 0.5849 | 0.9017 | 0.9078 | 0.9017 | 0.9014 |
0.0002 | 11.3333 | 3400 | 0.5864 | 0.9021 | 0.9080 | 0.9021 | 0.9018 |
0.0002 | 11.6667 | 3500 | 0.5881 | 0.9021 | 0.9080 | 0.9021 | 0.9018 |
0.0001 | 12.0 | 3600 | 0.5898 | 0.9029 | 0.9086 | 0.9029 | 0.9026 |
0.0002 | 12.3333 | 3700 | 0.5913 | 0.9033 | 0.9089 | 0.9033 | 0.9030 |
0.0001 | 12.6667 | 3800 | 0.5925 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 13.0 | 3900 | 0.5936 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 13.3333 | 4000 | 0.5945 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 13.6667 | 4100 | 0.5953 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 14.0 | 4200 | 0.5961 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 14.3333 | 4300 | 0.5966 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 14.6667 | 4400 | 0.5970 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
0.0001 | 15.0 | 4500 | 0.5971 | 0.9038 | 0.9093 | 0.9038 | 0.9034 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Accuracy on imagefoldertest set self-reported0.902
- Precision on imagefoldertest set self-reported0.906
- Recall on imagefoldertest set self-reported0.902
- F1 on imagefoldertest set self-reported0.901