vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_MIX-finetune

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3739
  • Accuracy: 0.9025
  • Precision: 0.9065
  • Recall: 0.9025
  • F1: 0.9011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.1672 0.3333 100 0.3739 0.9025 0.9065 0.9025 0.9011
0.1364 0.6667 200 0.7118 0.7879 0.8371 0.7879 0.7837
0.0603 1.0 300 0.6678 0.8275 0.8502 0.8275 0.8257
0.0532 1.3333 400 0.6051 0.8596 0.8785 0.8596 0.8578
0.0195 1.6667 500 0.6989 0.8263 0.8493 0.8263 0.8278
0.0284 2.0 600 0.7349 0.8342 0.8608 0.8342 0.8366
0.0145 2.3333 700 0.7102 0.8662 0.8741 0.8662 0.8636
0.0142 2.6667 800 0.7562 0.8583 0.8652 0.8583 0.8554
0.0327 3.0 900 0.6251 0.87 0.8830 0.87 0.8697
0.0014 3.3333 1000 0.6991 0.8571 0.8772 0.8571 0.8535
0.0015 3.6667 1100 0.4318 0.9075 0.9117 0.9075 0.9077
0.0022 4.0 1200 0.7833 0.8592 0.8752 0.8592 0.8583
0.0049 4.3333 1300 0.4950 0.9054 0.9088 0.9054 0.9049
0.0125 4.6667 1400 0.5476 0.8879 0.8898 0.8879 0.8873
0.0163 5.0 1500 0.4917 0.9096 0.9099 0.9096 0.9087
0.003 5.3333 1600 0.8279 0.8612 0.8665 0.8612 0.8586
0.0027 5.6667 1700 0.9960 0.8242 0.8615 0.8242 0.8141
0.0015 6.0 1800 0.7634 0.8621 0.8865 0.8621 0.8611
0.0006 6.3333 1900 0.5313 0.9 0.9068 0.9 0.8991
0.0005 6.6667 2000 0.4222 0.9225 0.9243 0.9225 0.9222
0.0322 7.0 2100 0.5260 0.9067 0.9115 0.9067 0.9063
0.0106 7.3333 2200 0.5679 0.8817 0.8903 0.8817 0.8819
0.0006 7.6667 2300 0.7876 0.8517 0.8828 0.8517 0.8532
0.0004 8.0 2400 0.5605 0.8992 0.9061 0.8992 0.8987
0.0003 8.3333 2500 0.5620 0.9021 0.9084 0.9021 0.9016
0.0003 8.6667 2600 0.5725 0.9004 0.9071 0.9004 0.9001
0.0002 9.0 2700 0.5745 0.9008 0.9074 0.9008 0.9006
0.0002 9.3333 2800 0.5751 0.9012 0.9074 0.9012 0.9009
0.0002 9.6667 2900 0.5769 0.9017 0.9078 0.9017 0.9013
0.0002 10.0 3000 0.5792 0.9012 0.9075 0.9012 0.9009
0.0002 10.3333 3100 0.5812 0.9017 0.9078 0.9017 0.9014
0.0002 10.6667 3200 0.5832 0.9017 0.9078 0.9017 0.9014
0.0002 11.0 3300 0.5849 0.9017 0.9078 0.9017 0.9014
0.0002 11.3333 3400 0.5864 0.9021 0.9080 0.9021 0.9018
0.0002 11.6667 3500 0.5881 0.9021 0.9080 0.9021 0.9018
0.0001 12.0 3600 0.5898 0.9029 0.9086 0.9029 0.9026
0.0002 12.3333 3700 0.5913 0.9033 0.9089 0.9033 0.9030
0.0001 12.6667 3800 0.5925 0.9038 0.9093 0.9038 0.9034
0.0001 13.0 3900 0.5936 0.9038 0.9093 0.9038 0.9034
0.0001 13.3333 4000 0.5945 0.9038 0.9093 0.9038 0.9034
0.0001 13.6667 4100 0.5953 0.9038 0.9093 0.9038 0.9034
0.0001 14.0 4200 0.5961 0.9038 0.9093 0.9038 0.9034
0.0001 14.3333 4300 0.5966 0.9038 0.9093 0.9038 0.9034
0.0001 14.6667 4400 0.5970 0.9038 0.9093 0.9038 0.9034
0.0001 15.0 4500 0.5971 0.9038 0.9093 0.9038 0.9034

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Evaluation results