vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC-finetune

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3310
  • Accuracy: 0.9083
  • Precision: 0.9122
  • Recall: 0.9083
  • F1: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.058 0.6667 100 0.3310 0.9083 0.9122 0.9083 0.9062
0.0028 1.3333 200 1.0903 0.7817 0.8859 0.7817 0.7660
0.016 2.0 300 0.8386 0.8167 0.8599 0.8167 0.8163
0.0032 2.6667 400 0.7872 0.8592 0.8953 0.8592 0.8567
0.0029 3.3333 500 1.1179 0.8058 0.8379 0.8058 0.8004
0.001 4.0 600 0.7550 0.8617 0.8971 0.8617 0.8628
0.0006 4.6667 700 0.6433 0.8833 0.9051 0.8833 0.8850
0.0004 5.3333 800 0.6051 0.8883 0.9094 0.8883 0.8903
0.0004 6.0 900 0.6016 0.8925 0.9128 0.8925 0.8946
0.0003 6.6667 1000 0.6000 0.8933 0.9138 0.8933 0.8956
0.0003 7.3333 1100 0.6001 0.8925 0.9130 0.8925 0.8947
0.0003 8.0 1200 0.6025 0.8933 0.9134 0.8933 0.8955
0.0002 8.6667 1300 0.6047 0.8958 0.9151 0.8958 0.8980
0.0002 9.3333 1400 0.6045 0.8958 0.9151 0.8958 0.8980
0.0002 10.0 1500 0.6056 0.8958 0.9147 0.8958 0.8979
0.0002 10.6667 1600 0.6063 0.8958 0.9147 0.8958 0.8979
0.0002 11.3333 1700 0.6082 0.8967 0.9152 0.8967 0.8987
0.0002 12.0 1800 0.6092 0.8967 0.9152 0.8967 0.8987
0.0002 12.6667 1900 0.6091 0.8967 0.9152 0.8967 0.8987
0.0002 13.3333 2000 0.6104 0.8967 0.9152 0.8967 0.8987
0.0002 14.0 2100 0.6111 0.8967 0.9152 0.8967 0.8987
0.0002 14.6667 2200 0.6114 0.8967 0.9152 0.8967 0.8987

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu126
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Evaluation results