vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SEC-finetune
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3310
- Accuracy: 0.9083
- Precision: 0.9122
- Recall: 0.9083
- F1: 0.9062
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.058 | 0.6667 | 100 | 0.3310 | 0.9083 | 0.9122 | 0.9083 | 0.9062 |
0.0028 | 1.3333 | 200 | 1.0903 | 0.7817 | 0.8859 | 0.7817 | 0.7660 |
0.016 | 2.0 | 300 | 0.8386 | 0.8167 | 0.8599 | 0.8167 | 0.8163 |
0.0032 | 2.6667 | 400 | 0.7872 | 0.8592 | 0.8953 | 0.8592 | 0.8567 |
0.0029 | 3.3333 | 500 | 1.1179 | 0.8058 | 0.8379 | 0.8058 | 0.8004 |
0.001 | 4.0 | 600 | 0.7550 | 0.8617 | 0.8971 | 0.8617 | 0.8628 |
0.0006 | 4.6667 | 700 | 0.6433 | 0.8833 | 0.9051 | 0.8833 | 0.8850 |
0.0004 | 5.3333 | 800 | 0.6051 | 0.8883 | 0.9094 | 0.8883 | 0.8903 |
0.0004 | 6.0 | 900 | 0.6016 | 0.8925 | 0.9128 | 0.8925 | 0.8946 |
0.0003 | 6.6667 | 1000 | 0.6000 | 0.8933 | 0.9138 | 0.8933 | 0.8956 |
0.0003 | 7.3333 | 1100 | 0.6001 | 0.8925 | 0.9130 | 0.8925 | 0.8947 |
0.0003 | 8.0 | 1200 | 0.6025 | 0.8933 | 0.9134 | 0.8933 | 0.8955 |
0.0002 | 8.6667 | 1300 | 0.6047 | 0.8958 | 0.9151 | 0.8958 | 0.8980 |
0.0002 | 9.3333 | 1400 | 0.6045 | 0.8958 | 0.9151 | 0.8958 | 0.8980 |
0.0002 | 10.0 | 1500 | 0.6056 | 0.8958 | 0.9147 | 0.8958 | 0.8979 |
0.0002 | 10.6667 | 1600 | 0.6063 | 0.8958 | 0.9147 | 0.8958 | 0.8979 |
0.0002 | 11.3333 | 1700 | 0.6082 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
0.0002 | 12.0 | 1800 | 0.6092 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
0.0002 | 12.6667 | 1900 | 0.6091 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
0.0002 | 13.3333 | 2000 | 0.6104 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
0.0002 | 14.0 | 2100 | 0.6111 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
0.0002 | 14.6667 | 2200 | 0.6114 | 0.8967 | 0.9152 | 0.8967 | 0.8987 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Accuracy on imagefoldertest set self-reported0.908
- Precision on imagefoldertest set self-reported0.912
- Recall on imagefoldertest set self-reported0.908
- F1 on imagefoldertest set self-reported0.906