Izarel's picture
update model card README.md
9c62090
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: distilbert-base-uncased_fine_tuned_body_text
    results: []

distilbert-base-uncased_fine_tuned_body_text

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2153
  • Accuracy: {'accuracy': 0.8827265261428963}
  • Recall: {'recall': 0.8641975308641975}
  • Precision: {'precision': 0.8900034993584509}
  • F1: {'f1': 0.8769106999195494}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.3056 1.0 2284 0.3040 {'accuracy': 0.8874897344648235} {'recall': 0.8466417487824216} {'precision': 0.914261252446184} {'f1': 0.8791531902381653}
0.2279 2.0 4568 0.2891 {'accuracy': 0.8908294552422666} {'recall': 0.8606863744478424} {'precision': 0.9086452230060983} {'f1': 0.8840158213122382}
0.1467 3.0 6852 0.3580 {'accuracy': 0.8882562277580072} {'recall': 0.8452825914599615} {'precision': 0.9170557876628164} {'f1': 0.8797076678257796}
0.0921 4.0 9136 0.4560 {'accuracy': 0.8754448398576512} {'recall': 0.8948918337297542} {'precision': 0.8543468858131488} {'f1': 0.8741494717043756}
0.0587 5.0 11420 0.5701 {'accuracy': 0.8768135778811935} {'recall': 0.8139087099331748} {'precision': 0.9221095855254716} {'f1': 0.8646372277704246}
0.0448 6.0 13704 0.6738 {'accuracy': 0.8767040788393101} {'recall': 0.8794880507418734} {'precision': 0.8673070479168994} {'f1': 0.873355078168935}
0.0289 7.0 15988 0.7965 {'accuracy': 0.8798248015329866} {'recall': 0.8491335372069317} {'precision': 0.8967703349282297} {'f1': 0.8723020536389552}
0.0214 8.0 18272 0.8244 {'accuracy': 0.8811387900355871} {'recall': 0.8576282704723072} {'precision': 0.8922931887815225} {'f1': 0.8746173837712965}
0.0147 9.0 20556 0.8740 {'accuracy': 0.8806460443471119} {'recall': 0.8669158455091177} {'precision': 0.8839357893521191} {'f1': 0.8753430924062213}
0.0099 10.0 22840 0.9716 {'accuracy': 0.8788940596769779} {'recall': 0.8694076339336279} {'precision': 0.8787635947338294} {'f1': 0.8740605784559327}
0.0092 11.0 25124 1.0296 {'accuracy': 0.8822885299753627} {'recall': 0.8669158455091177} {'precision': 0.8870089233978444} {'f1': 0.876847290640394}
0.0039 12.0 27408 1.0974 {'accuracy': 0.8787845606350945} {'recall': 0.8628383735417374} {'precision': 0.8836561883772184} {'f1': 0.8731232091690544}
0.0053 13.0 29692 1.0833 {'accuracy': 0.8799890500958116} {'recall': 0.8503794314191868} {'precision': 0.8960496479293472} {'f1': 0.8726173872617387}
0.0032 14.0 31976 1.1731 {'accuracy': 0.8813030385984123} {'recall': 0.8705402650356778} {'precision': 0.8823326828148318} {'f1': 0.8763968072976055}
0.0017 15.0 34260 1.2153 {'accuracy': 0.8827265261428963} {'recall': 0.8641975308641975} {'precision': 0.8900034993584509} {'f1': 0.8769106999195494}

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1