File size: 4,220 Bytes
5cfc72d 70a3e24 5cfc72d c6a7bf8 5cfc72d 70a3e24 5cfc72d adcc6fe 5cfc72d b9da57c c6a7bf8 5cfc72d 096f619 5cfc72d c6a7bf8 5cfc72d 12e944a 02855a3 4e6aa37 12e944a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9259259259259259
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# delivery_truck_classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2419
- Accuracy: 0.9259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.8 | 3 | 1.8673 | 0.2222 |
| No log | 1.8 | 6 | 1.7421 | 0.2593 |
| No log | 2.8 | 9 | 1.5910 | 0.4259 |
| No log | 3.8 | 12 | 1.4371 | 0.5 |
| No log | 4.8 | 15 | 1.2871 | 0.5741 |
| No log | 5.8 | 18 | 1.1511 | 0.5741 |
| 1.8164 | 6.8 | 21 | 0.9363 | 0.7222 |
| 1.8164 | 7.8 | 24 | 0.7903 | 0.7778 |
| 1.8164 | 8.8 | 27 | 0.6839 | 0.7593 |
| 1.8164 | 9.8 | 30 | 0.5661 | 0.7778 |
| 1.8164 | 10.8 | 33 | 0.4638 | 0.8519 |
| 1.8164 | 11.8 | 36 | 0.4015 | 0.8704 |
| 1.8164 | 12.8 | 39 | 0.3809 | 0.8704 |
| 0.8525 | 13.8 | 42 | 0.3214 | 0.9074 |
| 0.8525 | 14.8 | 45 | 0.3114 | 0.8704 |
| 0.8525 | 15.8 | 48 | 0.3026 | 0.8889 |
| 0.8525 | 16.8 | 51 | 0.2970 | 0.8889 |
| 0.8525 | 17.8 | 54 | 0.2597 | 0.8889 |
| 0.8525 | 18.8 | 57 | 0.2792 | 0.8889 |
| 0.4831 | 19.8 | 60 | 0.3209 | 0.8704 |
| 0.4831 | 20.8 | 63 | 0.2929 | 0.9074 |
| 0.4831 | 21.8 | 66 | 0.2419 | 0.9259 |
| 0.4831 | 22.8 | 69 | 0.2496 | 0.9074 |
| 0.4831 | 23.8 | 72 | 0.2953 | 0.9074 |
| 0.4831 | 24.8 | 75 | 0.3094 | 0.8889 |
| 0.4831 | 25.8 | 78 | 0.2792 | 0.9259 |
| 0.3889 | 26.8 | 81 | 0.2522 | 0.9259 |
| 0.3889 | 27.8 | 84 | 0.2451 | 0.9259 |
| 0.3889 | 28.8 | 87 | 0.2541 | 0.9074 |
| 0.3889 | 29.8 | 90 | 0.2718 | 0.9074 |
| 0.3889 | 30.8 | 93 | 0.2738 | 0.9074 |
| 0.3889 | 31.8 | 96 | 0.2639 | 0.9259 |
| 0.3889 | 32.8 | 99 | 0.2561 | 0.9259 |
| 0.3407 | 33.8 | 102 | 0.2497 | 0.9259 |
| 0.3407 | 34.8 | 105 | 0.2501 | 0.9259 |
| 0.3407 | 35.8 | 108 | 0.2455 | 0.9259 |
| 0.3407 | 36.8 | 111 | 0.2381 | 0.9259 |
| 0.3407 | 37.8 | 114 | 0.2340 | 0.9259 |
| 0.3407 | 38.8 | 117 | 0.2321 | 0.9259 |
| 0.3112 | 39.8 | 120 | 0.2315 | 0.9259 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|