JEdward7777's picture
update model card README.md
0d27d69
|
raw
history blame
4.23 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9791666666666666

delivery_truck_classification

This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0515
  • Accuracy: 0.9792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 0.0261 1.0
No log 1.86 6 0.0246 1.0
No log 2.86 9 0.0350 0.9792
No log 3.86 12 0.0298 1.0
No log 4.86 15 0.0362 0.9792
No log 5.86 18 0.0541 0.9792
0.2214 6.86 21 0.0363 0.9792
0.2214 7.86 24 0.0221 1.0
0.2214 8.86 27 0.0366 0.9792
0.2214 9.86 30 0.0502 0.9792
0.2214 10.86 33 0.0355 0.9792
0.2214 11.86 36 0.0218 1.0
0.2214 12.86 39 0.0140 1.0
0.183 13.86 42 0.0172 1.0
0.183 14.86 45 0.0300 0.9792
0.183 15.86 48 0.0589 0.9792
0.183 16.86 51 0.0693 0.9792
0.183 17.86 54 0.0496 0.9792
0.183 18.86 57 0.0316 0.9792
0.1706 19.86 60 0.0341 0.9792
0.1706 20.86 63 0.0348 0.9792
0.1706 21.86 66 0.0344 0.9792
0.1706 22.86 69 0.0469 0.9792
0.1706 23.86 72 0.0597 0.9792
0.1706 24.86 75 0.0530 0.9792
0.1706 25.86 78 0.0402 0.9792
0.1644 26.86 81 0.0362 0.9792
0.1644 27.86 84 0.0384 0.9792
0.1644 28.86 87 0.0310 0.9792
0.1644 29.86 90 0.0293 0.9792
0.1644 30.86 93 0.0375 0.9792
0.1644 31.86 96 0.0460 0.9792
0.1644 32.86 99 0.0522 0.9792
0.1539 33.86 102 0.0551 0.9792
0.1539 34.86 105 0.0552 0.9792
0.1539 35.86 108 0.0544 0.9792
0.1539 36.86 111 0.0552 0.9792
0.1539 37.86 114 0.0541 0.9792
0.1539 38.86 117 0.0526 0.9792
0.1401 39.86 120 0.0515 0.9792

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1