JEdward7777's picture
update model card README.md
c3eb67c
|
raw
history blame
4.21 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0416
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.73 2 0.0416 1.0
No log 1.73 4 0.0346 1.0
No log 2.73 6 0.0293 1.0
No log 3.73 8 0.0186 1.0
No log 4.73 10 0.0205 1.0
No log 5.73 12 0.0604 0.9730
No log 6.73 14 0.0332 1.0
No log 7.73 16 0.0250 1.0
No log 8.73 18 0.0386 1.0
0.2483 9.73 20 0.0438 1.0
0.2483 10.73 22 0.0447 1.0
0.2483 11.73 24 0.0676 0.9730
0.2483 12.73 26 0.0786 0.9730
0.2483 13.73 28 0.0389 1.0
0.2483 14.73 30 0.0278 1.0
0.2483 15.73 32 0.0250 1.0
0.2483 16.73 34 0.0283 1.0
0.2483 17.73 36 0.0502 0.9730
0.2483 18.73 38 0.0711 0.9730
0.1759 19.73 40 0.0637 0.9730
0.1759 20.73 42 0.0459 1.0
0.1759 21.73 44 0.0394 1.0
0.1759 22.73 46 0.0419 1.0
0.1759 23.73 48 0.0423 1.0
0.1759 24.73 50 0.0463 0.9730
0.1759 25.73 52 0.0503 0.9730
0.1759 26.73 54 0.0616 0.9730
0.1759 27.73 56 0.0641 0.9730
0.1759 28.73 58 0.0529 0.9730
0.1669 29.73 60 0.0485 0.9730
0.1669 30.73 62 0.0465 0.9730
0.1669 31.73 64 0.0456 0.9730
0.1669 32.73 66 0.0478 0.9730
0.1669 33.73 68 0.0467 0.9730
0.1669 34.73 70 0.0473 0.9730
0.1669 35.73 72 0.0486 0.9730
0.1669 36.73 74 0.0500 0.9730
0.1669 37.73 76 0.0502 0.9730
0.1669 38.73 78 0.0500 0.9730
0.1589 39.73 80 0.0493 0.9730

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cpu
  • Datasets 2.4.0
  • Tokenizers 0.12.1