JEdward7777's picture
update model card README.md
a6d015b
|
raw
history blame
4.23 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9767441860465116

delivery_truck_classification

This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1403
  • Accuracy: 0.9767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 0.1491 0.9535
No log 2.0 6 0.1462 0.9535
No log 3.0 9 0.1403 0.9767
No log 4.0 12 0.1431 0.9767
No log 5.0 15 0.1761 0.9535
No log 6.0 18 0.1930 0.9535
0.2637 7.0 21 0.1677 0.9535
0.2637 8.0 24 0.1835 0.9767
0.2637 9.0 27 0.1804 0.9535
0.2637 10.0 30 0.1856 0.9535
0.2637 11.0 33 0.1719 0.9535
0.2637 12.0 36 0.1680 0.9535
0.2637 13.0 39 0.1571 0.9535
0.1687 14.0 42 0.1333 0.9535
0.1687 15.0 45 0.1285 0.9535
0.1687 16.0 48 0.1293 0.9535
0.1687 17.0 51 0.1208 0.9767
0.1687 18.0 54 0.1061 0.9767
0.1687 19.0 57 0.0978 0.9767
0.1435 20.0 60 0.1100 0.9535
0.1435 21.0 63 0.1205 0.9535
0.1435 22.0 66 0.1027 0.9767
0.1435 23.0 69 0.1041 0.9767
0.1435 24.0 72 0.1021 0.9767
0.1435 25.0 75 0.0974 0.9767
0.1435 26.0 78 0.1006 0.9535
0.1361 27.0 81 0.1011 0.9535
0.1361 28.0 84 0.0993 0.9767
0.1361 29.0 87 0.0951 0.9767
0.1361 30.0 90 0.0971 0.9767
0.1361 31.0 93 0.1036 0.9767
0.1361 32.0 96 0.1085 0.9767
0.1361 33.0 99 0.1099 0.9767
0.1221 34.0 102 0.1115 0.9767
0.1221 35.0 105 0.1133 0.9767
0.1221 36.0 108 0.1184 0.9535
0.1221 37.0 111 0.1215 0.9535
0.1221 38.0 114 0.1224 0.9535
0.1221 39.0 117 0.1222 0.9535
0.1135 40.0 120 0.1217 0.9535

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1