JEdward7777's picture
update model card README.md
649d84e
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9692307692307692

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2293
  • Accuracy: 0.9692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.84 4 1.9335 0.1846
No log 1.84 8 1.8364 0.2615
No log 2.84 12 1.7054 0.3846
No log 3.84 16 1.5629 0.4154
2.0106 4.84 20 1.3907 0.4769
2.0106 5.84 24 1.1984 0.5692
2.0106 6.84 28 0.9519 0.6615
2.0106 7.84 32 0.7510 0.7846
2.0106 8.84 36 0.5749 0.8615
1.1009 9.84 40 0.4244 0.9385
1.1009 10.84 44 0.3652 0.8923
1.1009 11.84 48 0.2735 0.9538
1.1009 12.84 52 0.2909 0.8923
1.1009 13.84 56 0.2293 0.9692
0.6329 14.84 60 0.2563 0.9077
0.6329 15.84 64 0.2218 0.9231
0.6329 16.84 68 0.2102 0.9538
0.6329 17.84 72 0.1829 0.9231
0.6329 18.84 76 0.1992 0.9231
0.497 19.84 80 0.1814 0.9231
0.497 20.84 84 0.1807 0.9385
0.497 21.84 88 0.1765 0.9538
0.497 22.84 92 0.1868 0.9231
0.497 23.84 96 0.2089 0.9385
0.4198 24.84 100 0.1898 0.9385
0.4198 25.84 104 0.2065 0.9231
0.4198 26.84 108 0.1845 0.9231
0.4198 27.84 112 0.1724 0.9231
0.4198 28.84 116 0.1612 0.9385
0.368 29.84 120 0.1538 0.9538
0.368 30.84 124 0.1568 0.9538
0.368 31.84 128 0.1475 0.9692
0.368 32.84 132 0.1453 0.9538
0.368 33.84 136 0.1576 0.9692
0.3709 34.84 140 0.1430 0.9692
0.3709 35.84 144 0.1384 0.9692
0.3709 36.84 148 0.1432 0.9692
0.3709 37.84 152 0.1347 0.9692
0.3709 38.84 156 0.1359 0.9538
0.3373 39.84 160 0.1597 0.9538
0.3373 40.84 164 0.1522 0.9692
0.3373 41.84 168 0.1477 0.9538
0.3373 42.84 172 0.1480 0.9692
0.3373 43.84 176 0.1472 0.9692
0.3342 44.84 180 0.1473 0.9692
0.3342 45.84 184 0.1458 0.9692
0.3342 46.84 188 0.1529 0.9692
0.3342 47.84 192 0.1550 0.9692
0.3342 48.84 196 0.1494 0.9692
0.2914 49.84 200 0.1470 0.9692
0.2914 50.84 204 0.1460 0.9692
0.2914 51.84 208 0.1478 0.9692
0.2914 52.84 212 0.1481 0.9692
0.2914 53.84 216 0.1461 0.9692
0.2736 54.84 220 0.1458 0.9692
0.2736 55.84 224 0.1438 0.9692
0.2736 56.84 228 0.1427 0.9692
0.2736 57.84 232 0.1418 0.9692
0.2736 58.84 236 0.1401 0.9692
0.2589 59.84 240 0.1399 0.9692

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2