metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9555555555555556
delivery_truck_classification
This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2106
- Accuracy: 0.9556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.92 | 3 | 0.3269 | 0.9111 |
No log | 1.92 | 6 | 0.2814 | 0.9333 |
No log | 2.92 | 9 | 0.2625 | 0.9333 |
No log | 3.92 | 12 | 0.2771 | 0.9333 |
No log | 4.92 | 15 | 0.2419 | 0.9333 |
No log | 5.92 | 18 | 0.2264 | 0.9111 |
0.3207 | 6.92 | 21 | 0.2530 | 0.9333 |
0.3207 | 7.92 | 24 | 0.2242 | 0.9333 |
0.3207 | 8.92 | 27 | 0.2060 | 0.9556 |
0.3207 | 9.92 | 30 | 0.1809 | 0.9556 |
0.3207 | 10.92 | 33 | 0.2070 | 0.9556 |
0.3207 | 11.92 | 36 | 0.1999 | 0.9556 |
0.3207 | 12.92 | 39 | 0.2013 | 0.9556 |
0.2066 | 13.92 | 42 | 0.2027 | 0.9556 |
0.2066 | 14.92 | 45 | 0.1809 | 0.9556 |
0.2066 | 15.92 | 48 | 0.1657 | 0.9556 |
0.2066 | 16.92 | 51 | 0.1728 | 0.9556 |
0.2066 | 17.92 | 54 | 0.2013 | 0.9556 |
0.2066 | 18.92 | 57 | 0.2226 | 0.9556 |
0.1894 | 19.92 | 60 | 0.2091 | 0.9556 |
0.1894 | 20.92 | 63 | 0.1940 | 0.9556 |
0.1894 | 21.92 | 66 | 0.1976 | 0.9556 |
0.1894 | 22.92 | 69 | 0.2232 | 0.9556 |
0.1894 | 23.92 | 72 | 0.2381 | 0.9556 |
0.1894 | 24.92 | 75 | 0.2405 | 0.9556 |
0.1894 | 25.92 | 78 | 0.2247 | 0.9556 |
0.1713 | 26.92 | 81 | 0.1895 | 0.9556 |
0.1713 | 27.92 | 84 | 0.1836 | 0.9556 |
0.1713 | 28.92 | 87 | 0.1985 | 0.9556 |
0.1713 | 29.92 | 90 | 0.2127 | 0.9556 |
0.1713 | 30.92 | 93 | 0.2098 | 0.9556 |
0.1713 | 31.92 | 96 | 0.2003 | 0.9556 |
0.1713 | 32.92 | 99 | 0.1849 | 0.9556 |
0.1428 | 33.92 | 102 | 0.1843 | 0.9556 |
0.1428 | 34.92 | 105 | 0.1900 | 0.9556 |
0.1428 | 35.92 | 108 | 0.1972 | 0.9556 |
0.1428 | 36.92 | 111 | 0.2023 | 0.9556 |
0.1428 | 37.92 | 114 | 0.2060 | 0.9556 |
0.1428 | 38.92 | 117 | 0.2093 | 0.9556 |
0.1443 | 39.92 | 120 | 0.2106 | 0.9556 |
Framework versions
- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.12.1