JEdward7777's picture
update model card README.md
5a2042b
|
raw
history blame
4.23 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9555555555555556

delivery_truck_classification

This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2106
  • Accuracy: 0.9556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 3 0.3269 0.9111
No log 1.92 6 0.2814 0.9333
No log 2.92 9 0.2625 0.9333
No log 3.92 12 0.2771 0.9333
No log 4.92 15 0.2419 0.9333
No log 5.92 18 0.2264 0.9111
0.3207 6.92 21 0.2530 0.9333
0.3207 7.92 24 0.2242 0.9333
0.3207 8.92 27 0.2060 0.9556
0.3207 9.92 30 0.1809 0.9556
0.3207 10.92 33 0.2070 0.9556
0.3207 11.92 36 0.1999 0.9556
0.3207 12.92 39 0.2013 0.9556
0.2066 13.92 42 0.2027 0.9556
0.2066 14.92 45 0.1809 0.9556
0.2066 15.92 48 0.1657 0.9556
0.2066 16.92 51 0.1728 0.9556
0.2066 17.92 54 0.2013 0.9556
0.2066 18.92 57 0.2226 0.9556
0.1894 19.92 60 0.2091 0.9556
0.1894 20.92 63 0.1940 0.9556
0.1894 21.92 66 0.1976 0.9556
0.1894 22.92 69 0.2232 0.9556
0.1894 23.92 72 0.2381 0.9556
0.1894 24.92 75 0.2405 0.9556
0.1894 25.92 78 0.2247 0.9556
0.1713 26.92 81 0.1895 0.9556
0.1713 27.92 84 0.1836 0.9556
0.1713 28.92 87 0.1985 0.9556
0.1713 29.92 90 0.2127 0.9556
0.1713 30.92 93 0.2098 0.9556
0.1713 31.92 96 0.2003 0.9556
0.1713 32.92 99 0.1849 0.9556
0.1428 33.92 102 0.1843 0.9556
0.1428 34.92 105 0.1900 0.9556
0.1428 35.92 108 0.1972 0.9556
0.1428 36.92 111 0.2023 0.9556
0.1428 37.92 114 0.2060 0.9556
0.1428 38.92 117 0.2093 0.9556
0.1443 39.92 120 0.2106 0.9556

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.12.1