JEdward7777's picture
update model card README.md
924f90d
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0447
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.7166 0.2245
No log 1.86 6 1.5816 0.4082
No log 2.86 9 1.4084 0.5510
No log 3.86 12 1.1761 0.6327
No log 4.86 15 0.9245 0.7347
No log 5.86 18 0.6986 0.7959
1.608 6.86 21 0.5158 0.8367
1.608 7.86 24 0.3753 0.8776
1.608 8.86 27 0.3092 0.8980
1.608 9.86 30 0.2584 0.9388
1.608 10.86 33 0.2159 0.9184
1.608 11.86 36 0.1908 0.9592
1.608 12.86 39 0.1802 0.9592
0.6473 13.86 42 0.1682 0.9592
0.6473 14.86 45 0.1560 0.9592
0.6473 15.86 48 0.1322 0.9592
0.6473 16.86 51 0.1101 0.9592
0.6473 17.86 54 0.0938 0.9592
0.6473 18.86 57 0.0889 0.9796
0.3855 19.86 60 0.1025 0.9796
0.3855 20.86 63 0.0984 0.9796
0.3855 21.86 66 0.0867 0.9592
0.3855 22.86 69 0.0813 0.9592
0.3855 23.86 72 0.0768 0.9592
0.3855 24.86 75 0.0734 0.9796
0.3855 25.86 78 0.0698 0.9796
0.306 26.86 81 0.0618 0.9592
0.306 27.86 84 0.0547 0.9796
0.306 28.86 87 0.0538 0.9592
0.306 29.86 90 0.0487 0.9796
0.306 30.86 93 0.0447 1.0
0.306 31.86 96 0.0425 1.0
0.306 32.86 99 0.0451 1.0
0.2966 33.86 102 0.0497 1.0
0.2966 34.86 105 0.0558 1.0
0.2966 35.86 108 0.0582 0.9796
0.2966 36.86 111 0.0616 0.9592
0.2966 37.86 114 0.0657 0.9592
0.2966 38.86 117 0.0679 0.9592
0.2535 39.86 120 0.0684 0.9592

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1