JEdward7777's picture
update model card README.md
121233c
|
raw
history blame
4.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9491525423728814

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1253
  • Accuracy: 0.9492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.94 4 1.8882 0.1186
No log 1.94 8 1.6799 0.3559
No log 2.94 12 1.4260 0.5763
No log 3.94 16 1.1092 0.6780
1.7242 4.94 20 0.8653 0.7458
1.7242 5.94 24 0.6787 0.7797
1.7242 6.94 28 0.5506 0.8305
1.7242 7.94 32 0.4174 0.8814
1.7242 8.94 36 0.3643 0.8814
0.8337 9.94 40 0.2680 0.9322
0.8337 10.94 44 0.2705 0.8983
0.8337 11.94 48 0.2270 0.9153
0.8337 12.94 52 0.1790 0.9492
0.8337 13.94 56 0.1694 0.9322
0.493 14.94 60 0.1776 0.9153
0.493 15.94 64 0.1831 0.9322
0.493 16.94 68 0.1765 0.9322
0.493 17.94 72 0.1575 0.9322
0.493 18.94 76 0.1472 0.9322
0.3966 19.94 80 0.1360 0.9322
0.3966 20.94 84 0.1448 0.9492
0.3966 21.94 88 0.1658 0.9322
0.3966 22.94 92 0.1652 0.9322
0.3966 23.94 96 0.1565 0.9322
0.3645 24.94 100 0.1701 0.9322
0.3645 25.94 104 0.1830 0.9322
0.3645 26.94 108 0.1682 0.9322
0.3645 27.94 112 0.1410 0.9492
0.3645 28.94 116 0.1291 0.9492
0.3358 29.94 120 0.1248 0.9492
0.3358 30.94 124 0.1275 0.9492
0.3358 31.94 128 0.1257 0.9492
0.3358 32.94 132 0.1288 0.9492
0.3358 33.94 136 0.1246 0.9492
0.3049 34.94 140 0.1219 0.9492
0.3049 35.94 144 0.1224 0.9492
0.3049 36.94 148 0.1246 0.9492
0.3049 37.94 152 0.1243 0.9492
0.3049 38.94 156 0.1248 0.9492
0.2962 39.94 160 0.1253 0.9492

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2