metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
delivery_truck_classification
This model is a fine-tuned version of JEdward7777/delivery_truck_classification on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0188
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.86 | 3 | 0.1456 | 0.9574 |
No log | 1.86 | 6 | 0.0900 | 0.9787 |
No log | 2.86 | 9 | 0.0621 | 1.0 |
No log | 3.86 | 12 | 0.0635 | 0.9787 |
No log | 4.86 | 15 | 0.0535 | 0.9787 |
No log | 5.86 | 18 | 0.0663 | 0.9574 |
0.3029 | 6.86 | 21 | 0.0492 | 0.9787 |
0.3029 | 7.86 | 24 | 0.0559 | 0.9787 |
0.3029 | 8.86 | 27 | 0.0664 | 0.9787 |
0.3029 | 9.86 | 30 | 0.0643 | 0.9787 |
0.3029 | 10.86 | 33 | 0.0558 | 0.9787 |
0.3029 | 11.86 | 36 | 0.0365 | 1.0 |
0.3029 | 12.86 | 39 | 0.0438 | 0.9787 |
0.2212 | 13.86 | 42 | 0.0456 | 0.9787 |
0.2212 | 14.86 | 45 | 0.0402 | 0.9787 |
0.2212 | 15.86 | 48 | 0.0351 | 0.9787 |
0.2212 | 16.86 | 51 | 0.0359 | 0.9787 |
0.2212 | 17.86 | 54 | 0.0427 | 0.9787 |
0.2212 | 18.86 | 57 | 0.0490 | 0.9574 |
0.186 | 19.86 | 60 | 0.0396 | 0.9787 |
0.186 | 20.86 | 63 | 0.0291 | 0.9787 |
0.186 | 21.86 | 66 | 0.0152 | 1.0 |
0.186 | 22.86 | 69 | 0.0142 | 1.0 |
0.186 | 23.86 | 72 | 0.0178 | 1.0 |
0.186 | 24.86 | 75 | 0.0176 | 1.0 |
0.186 | 25.86 | 78 | 0.0151 | 1.0 |
0.1751 | 26.86 | 81 | 0.0110 | 1.0 |
0.1751 | 27.86 | 84 | 0.0121 | 1.0 |
0.1751 | 28.86 | 87 | 0.0158 | 1.0 |
0.1751 | 29.86 | 90 | 0.0250 | 1.0 |
0.1751 | 30.86 | 93 | 0.0292 | 1.0 |
0.1751 | 31.86 | 96 | 0.0260 | 1.0 |
0.1751 | 32.86 | 99 | 0.0206 | 1.0 |
0.1614 | 33.86 | 102 | 0.0181 | 1.0 |
0.1614 | 34.86 | 105 | 0.0170 | 1.0 |
0.1614 | 35.86 | 108 | 0.0170 | 1.0 |
0.1614 | 36.86 | 111 | 0.0177 | 1.0 |
0.1614 | 37.86 | 114 | 0.0188 | 1.0 |
0.1614 | 38.86 | 117 | 0.0189 | 1.0 |
0.1483 | 39.86 | 120 | 0.0188 | 1.0 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.0
- Tokenizers 0.13.1