JEdward7777's picture
update model card README.md
0161b92
|
raw
history blame
4.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9814814814814815

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1169
  • Accuracy: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 1.7556 0.2037
No log 1.8 6 1.5833 0.3704
No log 2.8 9 1.3483 0.5926
No log 3.8 12 1.1101 0.6667
No log 4.8 15 0.9116 0.7222
No log 5.8 18 0.7632 0.7407
1.7322 6.8 21 0.6118 0.7963
1.7322 7.8 24 0.5017 0.8519
1.7322 8.8 27 0.4241 0.8889
1.7322 9.8 30 0.3522 0.8704
1.7322 10.8 33 0.2918 0.9259
1.7322 11.8 36 0.2659 0.9259
1.7322 12.8 39 0.2587 0.9444
0.7462 13.8 42 0.2063 0.9259
0.7462 14.8 45 0.1870 0.9259
0.7462 15.8 48 0.1739 0.9630
0.7462 16.8 51 0.2043 0.9259
0.7462 17.8 54 0.1897 0.9259
0.7462 18.8 57 0.1764 0.9444
0.4232 19.8 60 0.1587 0.9444
0.4232 20.8 63 0.1556 0.9630
0.4232 21.8 66 0.1516 0.9630
0.4232 22.8 69 0.1264 0.9630
0.4232 23.8 72 0.1180 0.9630
0.4232 24.8 75 0.1110 0.9630
0.4232 25.8 78 0.1232 0.9630
0.3571 26.8 81 0.1169 0.9815
0.3571 27.8 84 0.1051 0.9815
0.3571 28.8 87 0.0986 0.9630
0.3571 29.8 90 0.0937 0.9630
0.3571 30.8 93 0.0931 0.9630
0.3571 31.8 96 0.0932 0.9630
0.3571 32.8 99 0.0941 0.9630
0.3239 33.8 102 0.0920 0.9630
0.3239 34.8 105 0.0851 0.9630
0.3239 35.8 108 0.0828 0.9630
0.3239 36.8 111 0.0810 0.9630
0.3239 37.8 114 0.0801 0.9630
0.3239 38.8 117 0.0804 0.9630
0.3111 39.8 120 0.0807 0.9630

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2