JEdward7777's picture
update model card README.md
5b7de6b
|
raw
history blame
4.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8571428571428571

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7036
  • Accuracy: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.9875 0.1429
No log 2.0 2 1.9132 0.1429
No log 3.0 3 1.7585 0.4286
No log 4.0 4 1.5935 0.4286
No log 5.0 5 1.5026 0.4286
No log 6.0 6 1.4699 0.4286
No log 7.0 7 1.4361 0.4286
No log 8.0 8 1.3962 0.4286
No log 9.0 9 1.3457 0.4286
No log 10.0 10 1.2874 0.4286
No log 11.0 11 1.2240 0.4286
No log 12.0 12 1.1643 0.4286
No log 13.0 13 1.1016 0.5714
No log 14.0 14 1.0356 0.5714
No log 15.0 15 0.9719 0.7143
No log 16.0 16 0.9120 0.7143
No log 17.0 17 0.8606 0.7143
No log 18.0 18 0.8117 0.7143
No log 19.0 19 0.7707 0.7143
0.5111 20.0 20 0.7367 0.7143
0.5111 21.0 21 0.7157 0.7143
0.5111 22.0 22 0.7067 0.7143
0.5111 23.0 23 0.7012 0.7143
0.5111 24.0 24 0.6977 0.7143
0.5111 25.0 25 0.6974 0.7143
0.5111 26.0 26 0.6977 0.7143
0.5111 27.0 27 0.7036 0.8571
0.5111 28.0 28 0.7074 0.8571
0.5111 29.0 29 0.7062 0.8571
0.5111 30.0 30 0.7056 0.8571
0.5111 31.0 31 0.7050 0.8571
0.5111 32.0 32 0.7050 0.8571
0.5111 33.0 33 0.7031 0.8571
0.5111 34.0 34 0.7016 0.8571
0.5111 35.0 35 0.6996 0.8571
0.5111 36.0 36 0.6971 0.8571
0.5111 37.0 37 0.6953 0.8571
0.5111 38.0 38 0.6939 0.8571
0.5111 39.0 39 0.6938 0.8571
0.1719 40.0 40 0.6936 0.8571

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1