JEdward7777's picture
update model card README.md
8f5fd73
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2180
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.57 1 1.7779 0.2727
No log 1.57 2 1.7088 0.3182
No log 2.57 3 1.5921 0.5455
No log 3.57 4 1.4587 0.5909
No log 4.57 5 1.3256 0.5455
No log 5.57 6 1.2211 0.5
No log 6.57 7 1.1066 0.6818
No log 7.57 8 0.9768 0.7727
No log 8.57 9 0.8590 0.8636
No log 9.57 10 0.7718 0.9091
No log 10.57 11 0.6999 0.9091
No log 11.57 12 0.6385 0.9091
No log 12.57 13 0.5761 0.9545
No log 13.57 14 0.5189 0.9545
No log 14.57 15 0.4646 0.9545
No log 15.57 16 0.4137 0.9091
No log 16.57 17 0.3679 0.9091
No log 17.57 18 0.3291 0.9091
No log 18.57 19 0.2937 0.9545
1.8863 19.57 20 0.2642 0.9545
1.8863 20.57 21 0.2366 0.9545
1.8863 21.57 22 0.2180 1.0
1.8863 22.57 23 0.2061 1.0
1.8863 23.57 24 0.1984 1.0
1.8863 24.57 25 0.1918 1.0
1.8863 25.57 26 0.1787 1.0
1.8863 26.57 27 0.1605 1.0
1.8863 27.57 28 0.1412 1.0
1.8863 28.57 29 0.1269 1.0
1.8863 29.57 30 0.1142 1.0
1.8863 30.57 31 0.1051 1.0
1.8863 31.57 32 0.0995 1.0
1.8863 32.57 33 0.0946 1.0
1.8863 33.57 34 0.0911 1.0
1.8863 34.57 35 0.0892 1.0
1.8863 35.57 36 0.0876 1.0
1.8863 36.57 37 0.0865 1.0
1.8863 37.57 38 0.0857 1.0
1.8863 38.57 39 0.0854 1.0
0.6775 39.57 40 0.0853 1.0

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cpu
  • Datasets 2.4.0
  • Tokenizers 0.12.1