metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.96875
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1835
- Accuracy: 0.9688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.89 | 4 | 2.0074 | 0.1562 |
No log | 1.89 | 8 | 1.8896 | 0.25 |
No log | 2.89 | 12 | 1.7421 | 0.4062 |
No log | 3.89 | 16 | 1.5892 | 0.4375 |
1.973 | 4.89 | 20 | 1.3623 | 0.6094 |
1.973 | 5.89 | 24 | 1.1093 | 0.6094 |
1.973 | 6.89 | 28 | 0.7901 | 0.7812 |
1.973 | 7.89 | 32 | 0.5773 | 0.8438 |
1.973 | 8.89 | 36 | 0.3857 | 0.8906 |
1.0433 | 9.89 | 40 | 0.3254 | 0.9062 |
1.0433 | 10.89 | 44 | 0.2461 | 0.9219 |
1.0433 | 11.89 | 48 | 0.2340 | 0.9219 |
1.0433 | 12.89 | 52 | 0.1835 | 0.9688 |
1.0433 | 13.89 | 56 | 0.1779 | 0.9375 |
0.5842 | 14.89 | 60 | 0.1545 | 0.9531 |
0.5842 | 15.89 | 64 | 0.1487 | 0.9531 |
0.5842 | 16.89 | 68 | 0.1996 | 0.9219 |
0.5842 | 17.89 | 72 | 0.1619 | 0.9062 |
0.5842 | 18.89 | 76 | 0.1350 | 0.9688 |
0.4616 | 19.89 | 80 | 0.1706 | 0.9375 |
0.4616 | 20.89 | 84 | 0.1579 | 0.9219 |
0.4616 | 21.89 | 88 | 0.1630 | 0.9375 |
0.4616 | 22.89 | 92 | 0.2080 | 0.9062 |
0.4616 | 23.89 | 96 | 0.1463 | 0.9375 |
0.3898 | 24.89 | 100 | 0.1185 | 0.9688 |
0.3898 | 25.89 | 104 | 0.1445 | 0.9219 |
0.3898 | 26.89 | 108 | 0.2051 | 0.9219 |
0.3898 | 27.89 | 112 | 0.1928 | 0.9375 |
0.3898 | 28.89 | 116 | 0.1365 | 0.9375 |
0.3511 | 29.89 | 120 | 0.1057 | 0.9531 |
0.3511 | 30.89 | 124 | 0.1091 | 0.9531 |
0.3511 | 31.89 | 128 | 0.1894 | 0.9375 |
0.3511 | 32.89 | 132 | 0.1208 | 0.9531 |
0.3511 | 33.89 | 136 | 0.1101 | 0.9688 |
0.3286 | 34.89 | 140 | 0.1409 | 0.9375 |
0.3286 | 35.89 | 144 | 0.1830 | 0.9219 |
0.3286 | 36.89 | 148 | 0.1519 | 0.9219 |
0.3286 | 37.89 | 152 | 0.1031 | 0.9531 |
0.3286 | 38.89 | 156 | 0.0962 | 0.9688 |
0.3095 | 39.89 | 160 | 0.0903 | 0.9688 |
0.3095 | 40.89 | 164 | 0.0886 | 0.9688 |
0.3095 | 41.89 | 168 | 0.1033 | 0.9688 |
0.3095 | 42.89 | 172 | 0.1117 | 0.9531 |
0.3095 | 43.89 | 176 | 0.1192 | 0.9375 |
0.3056 | 44.89 | 180 | 0.0984 | 0.9531 |
0.3056 | 45.89 | 184 | 0.0820 | 0.9531 |
0.3056 | 46.89 | 188 | 0.0857 | 0.9531 |
0.3056 | 47.89 | 192 | 0.1058 | 0.9531 |
0.3056 | 48.89 | 196 | 0.1163 | 0.9375 |
0.255 | 49.89 | 200 | 0.1121 | 0.9531 |
0.255 | 50.89 | 204 | 0.1004 | 0.9688 |
0.255 | 51.89 | 208 | 0.0954 | 0.9688 |
0.255 | 52.89 | 212 | 0.0925 | 0.9688 |
0.255 | 53.89 | 216 | 0.0892 | 0.9688 |
0.2494 | 54.89 | 220 | 0.0893 | 0.9688 |
0.2494 | 55.89 | 224 | 0.0901 | 0.9688 |
0.2494 | 56.89 | 228 | 0.0896 | 0.9688 |
0.2494 | 57.89 | 232 | 0.0903 | 0.9688 |
0.2494 | 58.89 | 236 | 0.0913 | 0.9688 |
0.2588 | 59.89 | 240 | 0.0918 | 0.9688 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2