JEdward7777's picture
update model card README.md
e542719
|
raw
history blame
5.45 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.96875

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1835
  • Accuracy: 0.9688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.89 4 2.0074 0.1562
No log 1.89 8 1.8896 0.25
No log 2.89 12 1.7421 0.4062
No log 3.89 16 1.5892 0.4375
1.973 4.89 20 1.3623 0.6094
1.973 5.89 24 1.1093 0.6094
1.973 6.89 28 0.7901 0.7812
1.973 7.89 32 0.5773 0.8438
1.973 8.89 36 0.3857 0.8906
1.0433 9.89 40 0.3254 0.9062
1.0433 10.89 44 0.2461 0.9219
1.0433 11.89 48 0.2340 0.9219
1.0433 12.89 52 0.1835 0.9688
1.0433 13.89 56 0.1779 0.9375
0.5842 14.89 60 0.1545 0.9531
0.5842 15.89 64 0.1487 0.9531
0.5842 16.89 68 0.1996 0.9219
0.5842 17.89 72 0.1619 0.9062
0.5842 18.89 76 0.1350 0.9688
0.4616 19.89 80 0.1706 0.9375
0.4616 20.89 84 0.1579 0.9219
0.4616 21.89 88 0.1630 0.9375
0.4616 22.89 92 0.2080 0.9062
0.4616 23.89 96 0.1463 0.9375
0.3898 24.89 100 0.1185 0.9688
0.3898 25.89 104 0.1445 0.9219
0.3898 26.89 108 0.2051 0.9219
0.3898 27.89 112 0.1928 0.9375
0.3898 28.89 116 0.1365 0.9375
0.3511 29.89 120 0.1057 0.9531
0.3511 30.89 124 0.1091 0.9531
0.3511 31.89 128 0.1894 0.9375
0.3511 32.89 132 0.1208 0.9531
0.3511 33.89 136 0.1101 0.9688
0.3286 34.89 140 0.1409 0.9375
0.3286 35.89 144 0.1830 0.9219
0.3286 36.89 148 0.1519 0.9219
0.3286 37.89 152 0.1031 0.9531
0.3286 38.89 156 0.0962 0.9688
0.3095 39.89 160 0.0903 0.9688
0.3095 40.89 164 0.0886 0.9688
0.3095 41.89 168 0.1033 0.9688
0.3095 42.89 172 0.1117 0.9531
0.3095 43.89 176 0.1192 0.9375
0.3056 44.89 180 0.0984 0.9531
0.3056 45.89 184 0.0820 0.9531
0.3056 46.89 188 0.0857 0.9531
0.3056 47.89 192 0.1058 0.9531
0.3056 48.89 196 0.1163 0.9375
0.255 49.89 200 0.1121 0.9531
0.255 50.89 204 0.1004 0.9688
0.255 51.89 208 0.0954 0.9688
0.255 52.89 212 0.0925 0.9688
0.255 53.89 216 0.0892 0.9688
0.2494 54.89 220 0.0893 0.9688
0.2494 55.89 224 0.0901 0.9688
0.2494 56.89 228 0.0896 0.9688
0.2494 57.89 232 0.0903 0.9688
0.2494 58.89 236 0.0913 0.9688
0.2588 59.89 240 0.0918 0.9688

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2