JEdward7777's picture
update model card README.md
5bbb75f
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9714285714285714

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1192
  • Accuracy: 0.9714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 1.9402 0.1286
No log 2.0 10 1.8379 0.2429
No log 3.0 15 1.6960 0.4
1.7795 4.0 20 1.4423 0.5143
1.7795 5.0 25 1.1295 0.6857
1.7795 6.0 30 0.8280 0.7286
1.7795 7.0 35 0.5572 0.8429
1.0588 8.0 40 0.3855 0.9286
1.0588 9.0 45 0.3107 0.9143
1.0588 10.0 50 0.2564 0.9286
1.0588 11.0 55 0.2050 0.9286
0.591 12.0 60 0.1900 0.9571
0.591 13.0 65 0.1720 0.9286
0.591 14.0 70 0.1881 0.9143
0.591 15.0 75 0.1789 0.9429
0.4609 16.0 80 0.1999 0.9143
0.4609 17.0 85 0.1492 0.9286
0.4609 18.0 90 0.1648 0.9286
0.4609 19.0 95 0.1195 0.9571
0.3941 20.0 100 0.1395 0.9286
0.3941 21.0 105 0.1476 0.9286
0.3941 22.0 110 0.1113 0.9571
0.3941 23.0 115 0.1328 0.9571
0.3475 24.0 120 0.1192 0.9714
0.3475 25.0 125 0.1200 0.9571
0.3475 26.0 130 0.1360 0.9714
0.3475 27.0 135 0.1425 0.9429
0.3542 28.0 140 0.1103 0.9571
0.3542 29.0 145 0.1244 0.9429
0.3542 30.0 150 0.1176 0.9571
0.3542 31.0 155 0.1028 0.9571
0.317 32.0 160 0.1084 0.9571
0.317 33.0 165 0.1269 0.9571
0.317 34.0 170 0.1295 0.9429
0.317 35.0 175 0.1245 0.9571
0.2947 36.0 180 0.1315 0.9429
0.2947 37.0 185 0.1313 0.9571
0.2947 38.0 190 0.1421 0.9429
0.2947 39.0 195 0.1440 0.9571
0.3124 40.0 200 0.1339 0.9571
0.3124 41.0 205 0.1553 0.9429
0.3124 42.0 210 0.1547 0.9429
0.3124 43.0 215 0.1316 0.9571
0.2843 44.0 220 0.1287 0.9571
0.2843 45.0 225 0.1308 0.9571
0.2843 46.0 230 0.1401 0.9571
0.2843 47.0 235 0.1186 0.9571
0.2655 48.0 240 0.1057 0.9571
0.2655 49.0 245 0.1203 0.9571
0.2655 50.0 250 0.1374 0.9571
0.2655 51.0 255 0.1361 0.9571
0.26 52.0 260 0.1198 0.9571
0.26 53.0 265 0.1175 0.9571
0.26 54.0 270 0.1313 0.9571
0.26 55.0 275 0.1398 0.9429
0.2601 56.0 280 0.1354 0.9571
0.2601 57.0 285 0.1271 0.9571
0.2601 58.0 290 0.1242 0.9571
0.2601 59.0 295 0.1233 0.9571
0.2562 60.0 300 0.1235 0.9571

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2