metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9714285714285714
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1192
- Accuracy: 0.9714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 5 | 1.9402 | 0.1286 |
No log | 2.0 | 10 | 1.8379 | 0.2429 |
No log | 3.0 | 15 | 1.6960 | 0.4 |
1.7795 | 4.0 | 20 | 1.4423 | 0.5143 |
1.7795 | 5.0 | 25 | 1.1295 | 0.6857 |
1.7795 | 6.0 | 30 | 0.8280 | 0.7286 |
1.7795 | 7.0 | 35 | 0.5572 | 0.8429 |
1.0588 | 8.0 | 40 | 0.3855 | 0.9286 |
1.0588 | 9.0 | 45 | 0.3107 | 0.9143 |
1.0588 | 10.0 | 50 | 0.2564 | 0.9286 |
1.0588 | 11.0 | 55 | 0.2050 | 0.9286 |
0.591 | 12.0 | 60 | 0.1900 | 0.9571 |
0.591 | 13.0 | 65 | 0.1720 | 0.9286 |
0.591 | 14.0 | 70 | 0.1881 | 0.9143 |
0.591 | 15.0 | 75 | 0.1789 | 0.9429 |
0.4609 | 16.0 | 80 | 0.1999 | 0.9143 |
0.4609 | 17.0 | 85 | 0.1492 | 0.9286 |
0.4609 | 18.0 | 90 | 0.1648 | 0.9286 |
0.4609 | 19.0 | 95 | 0.1195 | 0.9571 |
0.3941 | 20.0 | 100 | 0.1395 | 0.9286 |
0.3941 | 21.0 | 105 | 0.1476 | 0.9286 |
0.3941 | 22.0 | 110 | 0.1113 | 0.9571 |
0.3941 | 23.0 | 115 | 0.1328 | 0.9571 |
0.3475 | 24.0 | 120 | 0.1192 | 0.9714 |
0.3475 | 25.0 | 125 | 0.1200 | 0.9571 |
0.3475 | 26.0 | 130 | 0.1360 | 0.9714 |
0.3475 | 27.0 | 135 | 0.1425 | 0.9429 |
0.3542 | 28.0 | 140 | 0.1103 | 0.9571 |
0.3542 | 29.0 | 145 | 0.1244 | 0.9429 |
0.3542 | 30.0 | 150 | 0.1176 | 0.9571 |
0.3542 | 31.0 | 155 | 0.1028 | 0.9571 |
0.317 | 32.0 | 160 | 0.1084 | 0.9571 |
0.317 | 33.0 | 165 | 0.1269 | 0.9571 |
0.317 | 34.0 | 170 | 0.1295 | 0.9429 |
0.317 | 35.0 | 175 | 0.1245 | 0.9571 |
0.2947 | 36.0 | 180 | 0.1315 | 0.9429 |
0.2947 | 37.0 | 185 | 0.1313 | 0.9571 |
0.2947 | 38.0 | 190 | 0.1421 | 0.9429 |
0.2947 | 39.0 | 195 | 0.1440 | 0.9571 |
0.3124 | 40.0 | 200 | 0.1339 | 0.9571 |
0.3124 | 41.0 | 205 | 0.1553 | 0.9429 |
0.3124 | 42.0 | 210 | 0.1547 | 0.9429 |
0.3124 | 43.0 | 215 | 0.1316 | 0.9571 |
0.2843 | 44.0 | 220 | 0.1287 | 0.9571 |
0.2843 | 45.0 | 225 | 0.1308 | 0.9571 |
0.2843 | 46.0 | 230 | 0.1401 | 0.9571 |
0.2843 | 47.0 | 235 | 0.1186 | 0.9571 |
0.2655 | 48.0 | 240 | 0.1057 | 0.9571 |
0.2655 | 49.0 | 245 | 0.1203 | 0.9571 |
0.2655 | 50.0 | 250 | 0.1374 | 0.9571 |
0.2655 | 51.0 | 255 | 0.1361 | 0.9571 |
0.26 | 52.0 | 260 | 0.1198 | 0.9571 |
0.26 | 53.0 | 265 | 0.1175 | 0.9571 |
0.26 | 54.0 | 270 | 0.1313 | 0.9571 |
0.26 | 55.0 | 275 | 0.1398 | 0.9429 |
0.2601 | 56.0 | 280 | 0.1354 | 0.9571 |
0.2601 | 57.0 | 285 | 0.1271 | 0.9571 |
0.2601 | 58.0 | 290 | 0.1242 | 0.9571 |
0.2601 | 59.0 | 295 | 0.1233 | 0.9571 |
0.2562 | 60.0 | 300 | 0.1235 | 0.9571 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2