JEdward7777's picture
update model card README.md
b9da57c
|
raw
history blame
4.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9259259259259259

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2419
  • Accuracy: 0.9259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 1.8673 0.2222
No log 1.8 6 1.7421 0.2593
No log 2.8 9 1.5910 0.4259
No log 3.8 12 1.4371 0.5
No log 4.8 15 1.2871 0.5741
No log 5.8 18 1.1511 0.5741
1.8164 6.8 21 0.9363 0.7222
1.8164 7.8 24 0.7903 0.7778
1.8164 8.8 27 0.6839 0.7593
1.8164 9.8 30 0.5661 0.7778
1.8164 10.8 33 0.4638 0.8519
1.8164 11.8 36 0.4015 0.8704
1.8164 12.8 39 0.3809 0.8704
0.8525 13.8 42 0.3214 0.9074
0.8525 14.8 45 0.3114 0.8704
0.8525 15.8 48 0.3026 0.8889
0.8525 16.8 51 0.2970 0.8889
0.8525 17.8 54 0.2597 0.8889
0.8525 18.8 57 0.2792 0.8889
0.4831 19.8 60 0.3209 0.8704
0.4831 20.8 63 0.2929 0.9074
0.4831 21.8 66 0.2419 0.9259
0.4831 22.8 69 0.2496 0.9074
0.4831 23.8 72 0.2953 0.9074
0.4831 24.8 75 0.3094 0.8889
0.4831 25.8 78 0.2792 0.9259
0.3889 26.8 81 0.2522 0.9259
0.3889 27.8 84 0.2451 0.9259
0.3889 28.8 87 0.2541 0.9074
0.3889 29.8 90 0.2718 0.9074
0.3889 30.8 93 0.2738 0.9074
0.3889 31.8 96 0.2639 0.9259
0.3889 32.8 99 0.2561 0.9259
0.3407 33.8 102 0.2497 0.9259
0.3407 34.8 105 0.2501 0.9259
0.3407 35.8 108 0.2455 0.9259
0.3407 36.8 111 0.2381 0.9259
0.3407 37.8 114 0.2340 0.9259
0.3407 38.8 117 0.2321 0.9259
0.3112 39.8 120 0.2315 0.9259

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2