metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9259259259259259
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2419
- Accuracy: 0.9259
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 3 | 1.8673 | 0.2222 |
No log | 1.8 | 6 | 1.7421 | 0.2593 |
No log | 2.8 | 9 | 1.5910 | 0.4259 |
No log | 3.8 | 12 | 1.4371 | 0.5 |
No log | 4.8 | 15 | 1.2871 | 0.5741 |
No log | 5.8 | 18 | 1.1511 | 0.5741 |
1.8164 | 6.8 | 21 | 0.9363 | 0.7222 |
1.8164 | 7.8 | 24 | 0.7903 | 0.7778 |
1.8164 | 8.8 | 27 | 0.6839 | 0.7593 |
1.8164 | 9.8 | 30 | 0.5661 | 0.7778 |
1.8164 | 10.8 | 33 | 0.4638 | 0.8519 |
1.8164 | 11.8 | 36 | 0.4015 | 0.8704 |
1.8164 | 12.8 | 39 | 0.3809 | 0.8704 |
0.8525 | 13.8 | 42 | 0.3214 | 0.9074 |
0.8525 | 14.8 | 45 | 0.3114 | 0.8704 |
0.8525 | 15.8 | 48 | 0.3026 | 0.8889 |
0.8525 | 16.8 | 51 | 0.2970 | 0.8889 |
0.8525 | 17.8 | 54 | 0.2597 | 0.8889 |
0.8525 | 18.8 | 57 | 0.2792 | 0.8889 |
0.4831 | 19.8 | 60 | 0.3209 | 0.8704 |
0.4831 | 20.8 | 63 | 0.2929 | 0.9074 |
0.4831 | 21.8 | 66 | 0.2419 | 0.9259 |
0.4831 | 22.8 | 69 | 0.2496 | 0.9074 |
0.4831 | 23.8 | 72 | 0.2953 | 0.9074 |
0.4831 | 24.8 | 75 | 0.3094 | 0.8889 |
0.4831 | 25.8 | 78 | 0.2792 | 0.9259 |
0.3889 | 26.8 | 81 | 0.2522 | 0.9259 |
0.3889 | 27.8 | 84 | 0.2451 | 0.9259 |
0.3889 | 28.8 | 87 | 0.2541 | 0.9074 |
0.3889 | 29.8 | 90 | 0.2718 | 0.9074 |
0.3889 | 30.8 | 93 | 0.2738 | 0.9074 |
0.3889 | 31.8 | 96 | 0.2639 | 0.9259 |
0.3889 | 32.8 | 99 | 0.2561 | 0.9259 |
0.3407 | 33.8 | 102 | 0.2497 | 0.9259 |
0.3407 | 34.8 | 105 | 0.2501 | 0.9259 |
0.3407 | 35.8 | 108 | 0.2455 | 0.9259 |
0.3407 | 36.8 | 111 | 0.2381 | 0.9259 |
0.3407 | 37.8 | 114 | 0.2340 | 0.9259 |
0.3407 | 38.8 | 117 | 0.2321 | 0.9259 |
0.3112 | 39.8 | 120 | 0.2315 | 0.9259 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2