JEdward7777's picture
update model card README.md
e57465d
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1871
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 1.8912 0.0392
No log 1.8 6 1.7519 0.2745
No log 2.8 9 1.5549 0.4706
No log 3.8 12 1.2851 0.6667
No log 4.8 15 0.9968 0.7647
No log 5.8 18 0.7826 0.7843
1.787 6.8 21 0.6010 0.8824
1.787 7.8 24 0.4301 0.9020
1.787 8.8 27 0.3233 0.8824
1.787 9.8 30 0.2303 0.9412
1.787 10.8 33 0.1871 1.0
1.787 11.8 36 0.1600 0.9608
1.787 12.8 39 0.1334 0.9804
0.7554 13.8 42 0.1025 1.0
0.7554 14.8 45 0.0909 1.0
0.7554 15.8 48 0.0733 1.0
0.7554 16.8 51 0.0625 1.0
0.7554 17.8 54 0.0602 1.0
0.7554 18.8 57 0.0613 1.0
0.4731 19.8 60 0.0506 1.0
0.4731 20.8 63 0.0588 1.0
0.4731 21.8 66 0.0655 0.9804
0.4731 22.8 69 0.0517 1.0
0.4731 23.8 72 0.0414 1.0
0.4731 24.8 75 0.0408 1.0
0.4731 25.8 78 0.0417 1.0
0.4248 26.8 81 0.0389 1.0
0.4248 27.8 84 0.0376 1.0
0.4248 28.8 87 0.0361 1.0
0.4248 29.8 90 0.0351 1.0
0.4248 30.8 93 0.0299 1.0
0.4248 31.8 96 0.0284 1.0
0.4248 32.8 99 0.0279 1.0
0.3657 33.8 102 0.0275 1.0
0.3657 34.8 105 0.0279 1.0
0.3657 35.8 108 0.0279 1.0
0.3657 36.8 111 0.0278 1.0
0.3657 37.8 114 0.0276 1.0
0.3657 38.8 117 0.0274 1.0
0.3115 39.8 120 0.0274 1.0

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2