metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9733333333333334
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1787
- Accuracy: 0.9733
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.91 | 5 | 0.1787 | 0.9733 |
No log | 1.91 | 10 | 0.1787 | 0.9733 |
No log | 2.91 | 15 | 0.1787 | 0.9733 |
0.3799 | 3.91 | 20 | 0.1787 | 0.9733 |
0.3799 | 4.91 | 25 | 0.1787 | 0.9733 |
0.3799 | 5.91 | 30 | 0.1787 | 0.9733 |
0.3799 | 6.91 | 35 | 0.1787 | 0.9733 |
0.3648 | 7.91 | 40 | 0.1787 | 0.9733 |
0.3648 | 8.91 | 45 | 0.1787 | 0.9733 |
0.3648 | 9.91 | 50 | 0.1787 | 0.9733 |
0.3648 | 10.91 | 55 | 0.1787 | 0.9733 |
0.3954 | 11.91 | 60 | 0.1787 | 0.9733 |
0.3954 | 12.91 | 65 | 0.1787 | 0.9733 |
0.3954 | 13.91 | 70 | 0.1787 | 0.9733 |
0.3954 | 14.91 | 75 | 0.1787 | 0.9733 |
0.3926 | 15.91 | 80 | 0.1787 | 0.9733 |
0.3926 | 16.91 | 85 | 0.1787 | 0.9733 |
0.3926 | 17.91 | 90 | 0.1787 | 0.9733 |
0.3926 | 18.91 | 95 | 0.1787 | 0.9733 |
0.3801 | 19.91 | 100 | 0.1787 | 0.9733 |
0.3801 | 20.91 | 105 | 0.1787 | 0.9733 |
0.3801 | 21.91 | 110 | 0.1787 | 0.9733 |
0.3801 | 22.91 | 115 | 0.1787 | 0.9733 |
0.3815 | 23.91 | 120 | 0.1787 | 0.9733 |
0.3815 | 24.91 | 125 | 0.1787 | 0.9733 |
0.3815 | 25.91 | 130 | 0.1787 | 0.9733 |
0.3815 | 26.91 | 135 | 0.1787 | 0.9733 |
0.3955 | 27.91 | 140 | 0.1787 | 0.9733 |
0.3955 | 28.91 | 145 | 0.1787 | 0.9733 |
0.3955 | 29.91 | 150 | 0.1787 | 0.9733 |
0.3955 | 30.91 | 155 | 0.1787 | 0.9733 |
0.3854 | 31.91 | 160 | 0.1787 | 0.9733 |
0.3854 | 32.91 | 165 | 0.1787 | 0.9733 |
0.3854 | 33.91 | 170 | 0.1787 | 0.9733 |
0.3854 | 34.91 | 175 | 0.1787 | 0.9733 |
0.3949 | 35.91 | 180 | 0.1787 | 0.9733 |
0.3949 | 36.91 | 185 | 0.1787 | 0.9733 |
0.3949 | 37.91 | 190 | 0.1787 | 0.9733 |
0.3949 | 38.91 | 195 | 0.1787 | 0.9733 |
0.423 | 39.91 | 200 | 0.1787 | 0.9733 |
0.423 | 40.91 | 205 | 0.1787 | 0.9733 |
0.423 | 41.91 | 210 | 0.1787 | 0.9733 |
0.423 | 42.91 | 215 | 0.1787 | 0.9733 |
0.3761 | 43.91 | 220 | 0.1787 | 0.9733 |
0.3761 | 44.91 | 225 | 0.1787 | 0.9733 |
0.3761 | 45.91 | 230 | 0.1787 | 0.9733 |
0.3761 | 46.91 | 235 | 0.1787 | 0.9733 |
0.3673 | 47.91 | 240 | 0.1787 | 0.9733 |
0.3673 | 48.91 | 245 | 0.1787 | 0.9733 |
0.3673 | 49.91 | 250 | 0.1787 | 0.9733 |
0.3673 | 50.91 | 255 | 0.1787 | 0.9733 |
0.3639 | 51.91 | 260 | 0.1787 | 0.9733 |
0.3639 | 52.91 | 265 | 0.1787 | 0.9733 |
0.3639 | 53.91 | 270 | 0.1787 | 0.9733 |
0.3639 | 54.91 | 275 | 0.1787 | 0.9733 |
0.4031 | 55.91 | 280 | 0.1787 | 0.9733 |
0.4031 | 56.91 | 285 | 0.1787 | 0.9733 |
0.4031 | 57.91 | 290 | 0.1787 | 0.9733 |
0.4031 | 58.91 | 295 | 0.1787 | 0.9733 |
0.3787 | 59.91 | 300 | 0.1787 | 0.9733 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2