JFrediani's picture
BERT-L-offensive
5f6a6fb verified
|
raw
history blame
2.71 kB
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
model-index:
  - name: content
    results: []

content

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4451
  • Accuracy: 0.7772
  • F1-score: 0.7788
  • Recall: 0.8551
  • Precision: 0.7150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score Recall Precision
0.5156 0.3814 500 0.4764 0.7687 0.7744 0.8972 0.6812
0.4498 0.7628 1000 0.4483 0.7790 0.7755 0.8622 0.7045
0.4198 1.1442 1500 0.4574 0.7745 0.7723 0.8642 0.6980
0.3687 1.5256 2000 0.4933 0.7696 0.7479 0.7723 0.7250
0.3591 1.9069 2500 0.4475 0.7902 0.7828 0.8545 0.7223
0.2809 2.2883 3000 0.5172 0.7696 0.7397 0.7400 0.7395
0.2712 2.6697 3500 0.5308 0.7799 0.7749 0.8564 0.7076
0.2482 3.0511 4000 0.6287 0.7622 0.7224 0.6992 0.7471
0.172 3.4325 4500 0.6831 0.7725 0.7491 0.7678 0.7314
0.1802 3.8139 5000 0.7141 0.7762 0.7570 0.7878 0.7285
0.1477 4.1953 5500 0.8481 0.7653 0.7444 0.7723 0.7184
0.121 4.5767 6000 0.9831 0.7639 0.7461 0.7840 0.7117
0.1377 4.9580 6500 0.9748 0.7662 0.7435 0.7658 0.7224

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1