JSWOOK's picture
End of training
f108c82 verified
|
raw
history blame
2.42 kB
metadata
library_name: transformers
language:
  - eng
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/callhome
model-index:
  - name: speaker-segmentation-fine-tuned-callhome-eng-forproject
    results: []

speaker-segmentation-fine-tuned-callhome-eng-forproject

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4600
  • Model Preparation Time: 0.0051
  • Der: 0.1818
  • False Alarm: 0.0578
  • Missed Detection: 0.0721
  • Confusion: 0.0518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.392 1.0 362 0.4730 0.0051 0.1926 0.0622 0.0736 0.0568
0.4053 2.0 724 0.4586 0.0051 0.1838 0.0625 0.0704 0.0509
0.3865 3.0 1086 0.4537 0.0051 0.1811 0.0574 0.0723 0.0514
0.3571 4.0 1448 0.4570 0.0051 0.1805 0.0551 0.0740 0.0514
0.3409 5.0 1810 0.4600 0.0051 0.1818 0.0578 0.0721 0.0518

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1