See axolotl config
axolotl version: 0.4.1
base_model: /models/Yes24-Llama3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /home/jack/work/Llama3/Yes24_MultiTask_Model/MULTITASK_DATASET_20241008.parquet
ds_type: parquet
type: sharegpt
dataset_prepared_path: last_run_prepared
#val_set_size: 0.05
output_dir: ./out
chat_template: chatml
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradio_title: MULTITASK_FFT
gradio_share: false
gradio_server_name: 0.0.0.0
gradio_server_port: 8893
gradio_max_new_tokens: 2048
gradio_temperature: 0.4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
#evals_per_epoch: 2
#eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
out
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0