vit-xray-pneumonia-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0867
  • Accuracy: 0.9700

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0067 0.9882 63 0.2101 0.9313
0.8054 1.9882 126 0.1542 0.9519
0.7482 2.9882 189 0.1328 0.9451
0.6 3.9882 252 0.1121 0.9588
0.5436 4.9882 315 0.1295 0.9494
0.4978 5.9882 378 0.1167 0.9605
0.4683 6.9882 441 0.1033 0.9622
0.4701 7.9882 504 0.1176 0.9579
0.3527 8.9882 567 0.1119 0.9571
0.3545 9.9882 630 0.0990 0.9639
0.3264 10.9882 693 0.0838 0.9717
0.3305 11.9882 756 0.0733 0.9734
0.2702 12.9882 819 0.0834 0.9717
0.2764 13.9882 882 0.0763 0.9734
0.286 14.9882 945 0.0867 0.9700

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
35
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JacobChao/vit-xray-pneumonia-classification

Finetuned
(1828)
this model