Jacques2207's picture
End of training
8fd4977
|
raw
history blame
8.33 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
model-index:
  - name: layoutlmv3-real_triplet
    results: []

layoutlmv3-real_triplet

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0279
  • Item: {'precision': 0.9425511197663097, 'recall': 0.7378048780487805, 'f1': 0.827704147071398, 'number': 2624}
  • Aption: {'precision': 0.8349913494809689, 'recall': 0.7924876847290641, 'f1': 0.81318449873631, 'number': 4872}
  • Ootnote: {'precision': 0.7846153846153846, 'recall': 0.8360655737704918, 'f1': 0.8095238095238095, 'number': 122}
  • Ormula: {'precision': 0.9865976241242765, 'recall': 0.9920367534456356, 'f1': 0.9893097128894318, 'number': 3265}
  • Overall Precision: 0.9056
  • Overall Recall: 0.8397
  • Overall F1: 0.8714
  • Overall Accuracy: 0.9961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Item Aption Ootnote Ormula Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0166 1.0 8507 0.0252 {'precision': 0.9114948731786292, 'recall': 0.6436737804878049, 'f1': 0.7545231181594819, 'number': 2624} {'precision': 0.778075463273052, 'recall': 0.715311986863711, 'f1': 0.7453748262217944, 'number': 4872} {'precision': 0.8598130841121495, 'recall': 0.7540983606557377, 'f1': 0.8034934497816593, 'number': 122} {'precision': 0.976365868631062, 'recall': 0.9742725880551302, 'f1': 0.9753181051663345, 'number': 3265} 0.8711 0.7762 0.8209 0.9948
0.0075 2.0 17014 0.0318 {'precision': 0.9079837618403248, 'recall': 0.5114329268292683, 'f1': 0.6543149683081424, 'number': 2624} {'precision': 0.7194696441032798, 'recall': 0.6348522167487685, 'f1': 0.6745175008177952, 'number': 4872} {'precision': 0.9207920792079208, 'recall': 0.7622950819672131, 'f1': 0.8340807174887892, 'number': 122} {'precision': 0.9831132944427388, 'recall': 0.9807044410413476, 'f1': 0.9819073903710519, 'number': 3265} 0.8462 0.7103 0.7723 0.9938
0.0057 3.0 25521 0.0338 {'precision': 0.9227359088030399, 'recall': 0.5552591463414634, 'f1': 0.6933142993100166, 'number': 2624} {'precision': 0.7442236598890942, 'recall': 0.6611247947454844, 'f1': 0.7002173913043479, 'number': 4872} {'precision': 0.8859649122807017, 'recall': 0.8278688524590164, 'f1': 0.8559322033898306, 'number': 122} {'precision': 0.9791538933169834, 'recall': 0.9782542113323124, 'f1': 0.9787038455645779, 'number': 3265} 0.8589 0.7326 0.7907 0.9942
0.004 4.0 34028 0.0615 {'precision': 0.9321486268174475, 'recall': 0.43978658536585363, 'f1': 0.5976178146038322, 'number': 2624} {'precision': 0.6900404088424055, 'recall': 0.5958538587848933, 'f1': 0.639497742042075, 'number': 4872} {'precision': 0.8738738738738738, 'recall': 0.7950819672131147, 'f1': 0.832618025751073, 'number': 122} {'precision': 0.9880660954712362, 'recall': 0.9889739663093415, 'f1': 0.9885198224399205, 'number': 3265} 0.8367 0.6784 0.7493 0.9932
0.0027 5.0 42535 0.0227 {'precision': 0.9356973995271868, 'recall': 0.7541920731707317, 'f1': 0.8351972990082295, 'number': 2624} {'precision': 0.843103448275862, 'recall': 0.8029556650246306, 'f1': 0.8225399495374264, 'number': 4872} {'precision': 0.8571428571428571, 'recall': 0.7868852459016393, 'f1': 0.8205128205128205, 'number': 122} {'precision': 0.9850655288021944, 'recall': 0.9898928024502297, 'f1': 0.9874732661167125, 'number': 3265} 0.9085 0.8471 0.8767 0.9963
0.0021 6.0 51042 0.0165 {'precision': 0.9341987466427932, 'recall': 0.7953506097560976, 'f1': 0.859201317414574, 'number': 2624} {'precision': 0.856687898089172, 'recall': 0.8282019704433498, 'f1': 0.8422041327489042, 'number': 4872} {'precision': 0.9174311926605505, 'recall': 0.819672131147541, 'f1': 0.8658008658008659, 'number': 122} {'precision': 0.9736523319200484, 'recall': 0.9846860643185299, 'f1': 0.9791381148165067, 'number': 3265} 0.9113 0.8671 0.8887 0.9966
0.0015 7.0 59549 0.0271 {'precision': 0.9294605809128631, 'recall': 0.6829268292682927, 'f1': 0.7873462214411249, 'number': 2624} {'precision': 0.8111135515045025, 'recall': 0.7580049261083743, 'f1': 0.7836604774535808, 'number': 4872} {'precision': 0.8389830508474576, 'recall': 0.8114754098360656, 'f1': 0.825, 'number': 122} {'precision': 0.9880879657910813, 'recall': 0.9908116385911179, 'f1': 0.9894479278177092, 'number': 3265} 0.8932 0.8103 0.8498 0.9956
0.0012 8.0 68056 0.0231 {'precision': 0.9250706880301602, 'recall': 0.7480945121951219, 'f1': 0.8272229245680573, 'number': 2624} {'precision': 0.8451156812339332, 'recall': 0.8097290640394089, 'f1': 0.8270440251572327, 'number': 4872} {'precision': 0.8962264150943396, 'recall': 0.7786885245901639, 'f1': 0.8333333333333333, 'number': 122} {'precision': 0.9889739663093415, 'recall': 0.9889739663093415, 'f1': 0.9889739663093415, 'number': 3265} 0.9086 0.8483 0.8774 0.9962
0.0009 9.0 76563 0.0224 {'precision': 0.9263715110683349, 'recall': 0.7336128048780488, 'f1': 0.8188005104210974, 'number': 2624} {'precision': 0.835820895522388, 'recall': 0.7931034482758621, 'f1': 0.8139020537124803, 'number': 4872} {'precision': 0.832, 'recall': 0.8524590163934426, 'f1': 0.8421052631578947, 'number': 122} {'precision': 0.9829787234042553, 'recall': 0.9905053598774886, 'f1': 0.9867276887871854, 'number': 3265} 0.9022 0.8386 0.8693 0.9960
0.0007 10.0 85070 0.0279 {'precision': 0.9425511197663097, 'recall': 0.7378048780487805, 'f1': 0.827704147071398, 'number': 2624} {'precision': 0.8349913494809689, 'recall': 0.7924876847290641, 'f1': 0.81318449873631, 'number': 4872} {'precision': 0.7846153846153846, 'recall': 0.8360655737704918, 'f1': 0.8095238095238095, 'number': 122} {'precision': 0.9865976241242765, 'recall': 0.9920367534456356, 'f1': 0.9893097128894318, 'number': 3265} 0.9056 0.8397 0.8714 0.9961

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.12.1
  • Datasets 2.9.0
  • Tokenizers 0.13.2