Jawaria's picture
update model card README.md
9e69480
|
raw
history blame
2.67 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-pashto-colab-test-6
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 1

wav2vec2-large-xls-r-300m-pashto-colab-test-6

This model is a fine-tuned version of rsd16/wav2vec2-large-xlsr-53-fine-tuned-farsi on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.9
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1860014104903.68 0.96 100 nan 1.0
0.0 1.91 200 nan 1.0
0.0 2.87 300 nan 1.0
0.0 3.82 400 nan 1.0
0.0 4.78 500 nan 1.0
0.0 5.73 600 nan 1.0
0.0 6.69 700 nan 1.0
0.0 7.64 800 nan 1.0
0.0 8.6 900 nan 1.0
0.0 9.55 1000 nan 1.0
0.0 10.51 1100 nan 1.0
0.0 11.46 1200 nan 1.0
0.0 12.42 1300 nan 1.0
0.0 13.37 1400 nan 1.0
0.0 14.33 1500 nan 1.0

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3