Fish-Weight_Test / README.md
JayaPrakashAI's picture
Adding model files
da467b1 verified
---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: example.pkl
widget:
- structuredData:
Height:
- 11.52
- 12.48
- 12.3778
Length1:
- 23.2
- 24.0
- 23.9
Length2:
- 25.4
- 26.3
- 26.5
Length3:
- 30.0
- 31.2
- 31.1
Species:
- Bream
- Bream
- Bream
Width:
- 4.02
- 4.3056
- 4.6961
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('columntransformer', ColumnTransformer(remainder='passthrough',<br /> transformers=[('onehotencoder',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse=False),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20>)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))] |
| verbose | False |
| columntransformer | ColumnTransformer(remainder='passthrough',<br /> transformers=[('onehotencoder',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse=False),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20>)]) |
| gradientboostingregressor | GradientBoostingRegressor(random_state=42) |
| columntransformer__n_jobs | |
| columntransformer__remainder | passthrough |
| columntransformer__sparse_threshold | 0.3 |
| columntransformer__transformer_weights | |
| columntransformer__transformers | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20>)] |
| columntransformer__verbose | False |
| columntransformer__verbose_feature_names_out | True |
| columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
| columntransformer__onehotencoder__categories | auto |
| columntransformer__onehotencoder__drop | |
| columntransformer__onehotencoder__dtype | <class 'numpy.float64'> |
| columntransformer__onehotencoder__feature_name_combiner | concat |
| columntransformer__onehotencoder__handle_unknown | ignore |
| columntransformer__onehotencoder__max_categories | |
| columntransformer__onehotencoder__min_frequency | |
| columntransformer__onehotencoder__sparse | False |
| columntransformer__onehotencoder__sparse_output | True |
| gradientboostingregressor__alpha | 0.9 |
| gradientboostingregressor__ccp_alpha | 0.0 |
| gradientboostingregressor__criterion | friedman_mse |
| gradientboostingregressor__init | |
| gradientboostingregressor__learning_rate | 0.1 |
| gradientboostingregressor__loss | squared_error |
| gradientboostingregressor__max_depth | 3 |
| gradientboostingregressor__max_features | |
| gradientboostingregressor__max_leaf_nodes | |
| gradientboostingregressor__min_impurity_decrease | 0.0 |
| gradientboostingregressor__min_samples_leaf | 1 |
| gradientboostingregressor__min_samples_split | 2 |
| gradientboostingregressor__min_weight_fraction_leaf | 0.0 |
| gradientboostingregressor__n_estimators | 100 |
| gradientboostingregressor__n_iter_no_change | |
| gradientboostingregressor__random_state | 42 |
| gradientboostingregressor__subsample | 1.0 |
| gradientboostingregressor__tol | 0.0001 |
| gradientboostingregressor__validation_fraction | 0.1 |
| gradientboostingregressor__verbose | 0 |
| gradientboostingregressor__warm_start | False |
</details>
### Model Plot
<style>#sk-container-id-3 {color: black;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-15" type="checkbox" ><label for="sk-estimator-id-15" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20&gt;)])),(&#x27;gradientboostingregressor&#x27;,GradientBoostingRegressor(random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-16" type="checkbox" ><label for="sk-estimator-id-16" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;onehotencoder&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse=False),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20&gt;)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-17" type="checkbox" ><label for="sk-estimator-id-17" class="sk-toggleable__label sk-toggleable__label-arrow">onehotencoder</label><div class="sk-toggleable__content"><pre>&lt;sklearn.compose._column_transformer.make_column_selector object at 0x7c049c39ec20&gt;</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-18" type="checkbox" ><label for="sk-estimator-id-18" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse=False)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-19" type="checkbox" ><label for="sk-estimator-id-19" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[&#x27;Length1&#x27;, &#x27;Length2&#x27;, &#x27;Length3&#x27;, &#x27;Height&#x27;, &#x27;Width&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-20" type="checkbox" ><label for="sk-estimator-id-20" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-21" type="checkbox" ><label for="sk-estimator-id-21" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(random_state=42)</pre></div></div></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# model_card_authors
JP
# limitations
This model is intended for educational purposes.
# model_description
This is a GradientBoostingRegressor on a fish dataset.