Model discription

Hindi Summarization model. It summarizes a hindi paragraph.

Base model

  • mt5-small

How to use

from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

checkpoint = "Jayveersinh-Raj/hindi-summarizer-small"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

# Input paragraph for summarization
input_sentence = "<sum> your hindi paragraph"

# Tokenize the input sentence
input_ids = tokenizer.encode(input_sentence, return_tensors="pt").to("cuda")

# Generate predictions
with torch.no_grad():
   output_ids = model.generate(input_ids, max_new_tokens=200)

# Decode the generated output
output_sentence = tokenizer.decode(output_ids[0], skip_special_tokens=True)

# Print the generated output
print("Input:", input_sentence)
print("Summarized:", output_sentence)

Evaluation

  • Rogue1: 0.38
  • BLUE: 0.35
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.