roberta-base-rte / README.md
JeremiahZ's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#3)
0190d1b
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: roberta-base-rte
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: GLUE RTE
          type: glue
          args: rte
        metrics:
          - type: accuracy
            value: 0.7978339350180506
            name: Accuracy
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: rte
          split: validation
        metrics:
          - type: accuracy
            value: 0.7906137184115524
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWVhOWZkNGYyMWRmNzdmZTM5MTVmNzFhNjVlMzA1NWU4YjJjODk5ZjM4MTY1Yjg0MTc0MmRmZTNkMzIwZDAzNyIsInZlcnNpb24iOjF9.nFZpFXDSLEIcO-_Z43_5b08GIVQiU9hFUEZpTftW3h6_zqIYZSuM7jOIuDYS3YYWMz42NoH_kosEpJg7TK15Bg
          - type: precision
            value: 0.7552447552447552
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDYxZTkzZjk1NDU0MjhmNzYxM2IzNzJjNjE1Y2UxYTQ0MTJmNjJlMmUzNGY3MDdiMDAyZjQ2MmE4ODExYjYxNiIsInZlcnNpb24iOjF9.98rxE2rgU5ECIv4MGzMnaPRRYg3kGLsG4pZbMuYeAFEfXqBU1K0i_G-_cU7oxIqGypNmMhYVhVxZfC7wS_saAw
          - type: recall
            value: 0.8244274809160306
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTNhNDZiZjMzOWM0ZGJkODMzM2VmOGYxMTYyZDNjYTgwN2NiMDFlOGI4NzM5NjQ5ODc4MWM2YmM5MTZjMWFiOCIsInZlcnNpb24iOjF9.C9aEgIz392h-zFSd98CSmzQ7Y6N0Xq3VmGIMEq9aP3dQPPrtUfl9Ms_QMSgSyWMPDYHup3SAGAP0JmkiVeOoBg
          - type: auc
            value: 0.8564258078008994
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWVlNGVhOTRkNjUxMGMwZmE0YzBjZDQ0YzQ0ODRmYTc0YjI0MDQ2NTNkOWQ2YjU3MmI5NzI4ZWIwMzBlNTQ1NyIsInZlcnNpb24iOjF9.hSyJjOktSt3AItNnVtgWO9jgHwtNbhv4_KrWEV1r_ywopvbpNmSG4yzaI9PZ_bQQ-4ZSmFM8zUYxCl656TWoDQ
          - type: f1
            value: 0.7883211678832117
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4Mzk1MTkyZGJkZjQ1MWZkZDIyZTA3OTU0YmZhNjI4NGUxMjk4ZGZhNjZkN2JmZWRmZGU3OWM5Zjc0ODg4NyIsInZlcnNpb24iOjF9.gkQh5Y4dm8NimTtI0i-gHAYTxFRNlOtdgz-NJW8EvNKeFNWYXqa495Q-KEnSBRv88RKiNQXBp-3fyttjhX2HCw
          - type: loss
            value: 0.5560466051101685
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjczNTgxODRlN2Q4NmUyOTdjNzE0ZTZkOWVjZDgzNTdhODAyNGVkM2M1M2I4MGM2ZWMyMDE0ODdhMzQ0N2E1NCIsInZlcnNpb24iOjF9.TfXjqAGtiIQ62HzMkEQmKMMcL9a9bvfBTJARVmTPlIdOOxxF-xuVLXSyFqq2ajhDJXmUEETXBcFzSon_zbHTCQ

roberta-base-rte

This model is a fine-tuned version of roberta-base on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5446
  • Accuracy: 0.7978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.7023 0.4729
No log 2.0 312 0.6356 0.6895
No log 3.0 468 0.5177 0.7617
0.6131 4.0 624 0.6238 0.7473
0.6131 5.0 780 0.5446 0.7978
0.6131 6.0 936 0.9697 0.7545
0.2528 7.0 1092 1.1004 0.7690
0.2528 8.0 1248 1.1937 0.7726
0.2528 9.0 1404 1.3313 0.7726
0.1073 10.0 1560 1.3534 0.7726

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1