JerryLearnCode's picture
End of training
4bd4d98 verified
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Finetune - IERG4320 Project
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: en
split: None
args: en
metrics:
- name: Wer
type: wer
value: 18.293375256561422
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Finetune - IERG4320 Project
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5674
- Wer Ortho: 22.0544
- Wer: 18.2934
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:|
| 0.094 | 2.5974 | 200 | 0.4300 | 20.8774 | 17.1318 |
| 0.0105 | 5.1948 | 400 | 0.5000 | 21.6635 | 17.7999 |
| 0.0024 | 7.7922 | 600 | 0.5250 | 21.7294 | 17.9615 |
| 0.0015 | 10.3896 | 800 | 0.5528 | 23.3630 | 19.5205 |
| 0.0011 | 12.9870 | 1000 | 0.5674 | 22.0544 | 18.2934 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.4