SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the spectrum-design-docs dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
"Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
sds
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0075 |
cosine_accuracy@3 | 0.0156 |
cosine_accuracy@5 | 0.0475 |
cosine_accuracy@10 | 0.7815 |
cosine_precision@1 | 0.0075 |
cosine_precision@3 | 0.0052 |
cosine_precision@5 | 0.0095 |
cosine_precision@10 | 0.0782 |
cosine_recall@1 | 0.0075 |
cosine_recall@3 | 0.0156 |
cosine_recall@5 | 0.0475 |
cosine_recall@10 | 0.7815 |
cosine_ndcg@10 | 0.2544 |
cosine_mrr@10 | 0.1078 |
cosine_map@100 | 0.1164 |
Training Details
Training Dataset
spectrum-design-docs
- Dataset: spectrum-design-docs at 23f5565
- Size: 14,737 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 20 tokens
- mean: 30.87 tokens
- max: 47 tokens
- min: 18 tokens
- mean: 97.17 tokens
- max: 512 tokens
- Samples:
anchor positive Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project?
Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team.
Dependency chain: Spectrum DNA → Spectrum CSS
GitHub repository
Website
#spectrum_cssRepresent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI?
Progress circle
Options
Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs?
Legend
Behaviors
Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 22per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 100lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedprompts
: {'anchor': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 22per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: {'anchor': 'Represent this sentence for searching relevant passages: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | sds_cosine_ndcg@10 |
---|---|---|---|
1.0 | 7 | - | 0.2255 |
1.48 | 10 | 0.2646 | - |
2.0 | 14 | - | 0.2282 |
2.96 | 20 | 0.1412 | - |
3.0 | 21 | - | 0.2358 |
4.0 | 28 | - | 0.2397 |
4.32 | 30 | 0.0638 | - |
5.0 | 35 | - | 0.2430 |
5.8 | 40 | 0.0425 | - |
6.0 | 42 | - | 0.2449 |
7.0 | 49 | - | 0.2462 |
7.16 | 50 | 0.0237 | - |
8.0 | 56 | - | 0.2428 |
8.64 | 60 | 0.015 | - |
9.0 | 63 | - | 0.2456 |
10.0 | 70 | 0.0082 | 0.2456 |
11.0 | 77 | - | 0.2498 |
11.48 | 80 | 0.0052 | - |
12.0 | 84 | - | 0.2474 |
12.96 | 90 | 0.0035 | - |
13.0 | 91 | - | 0.2455 |
14.0 | 98 | - | 0.2475 |
14.32 | 100 | 0.0022 | - |
15.0 | 105 | - | 0.2472 |
15.8 | 110 | 0.002 | - |
16.0 | 112 | - | 0.2486 |
17.0 | 119 | - | 0.2506 |
17.16 | 120 | 0.0015 | - |
18.0 | 126 | - | 0.2490 |
18.64 | 130 | 0.0013 | - |
19.0 | 133 | - | 0.2489 |
20.0 | 140 | 0.0012 | 0.2491 |
21.0 | 147 | - | 0.2493 |
21.48 | 150 | 0.0011 | - |
22.0 | 154 | - | 0.2487 |
22.96 | 160 | 0.001 | - |
23.0 | 161 | - | 0.2486 |
24.0 | 168 | - | 0.2490 |
24.32 | 170 | 0.0008 | - |
25.0 | 175 | - | 0.2502 |
25.8 | 180 | 0.0008 | - |
26.0 | 182 | - | 0.2505 |
27.0 | 189 | - | 0.2523 |
27.16 | 190 | 0.0008 | - |
28.0 | 196 | - | 0.2516 |
28.64 | 200 | 0.0007 | - |
29.0 | 203 | - | 0.2509 |
30.0 | 210 | 0.0007 | 0.2522 |
31.0 | 217 | - | 0.2522 |
31.48 | 220 | 0.0006 | - |
32.0 | 224 | - | 0.2534 |
32.96 | 230 | 0.0007 | - |
33.0 | 231 | - | 0.2523 |
34.0 | 238 | - | 0.2524 |
34.32 | 240 | 0.0006 | - |
35.0 | 245 | - | 0.2518 |
35.8 | 250 | 0.0006 | - |
36.0 | 252 | - | 0.2529 |
37.0 | 259 | - | 0.2524 |
37.16 | 260 | 0.0006 | - |
38.0 | 266 | - | 0.2530 |
38.64 | 270 | 0.0005 | - |
39.0 | 273 | - | 0.2526 |
40.0 | 280 | 0.0006 | 0.2539 |
41.0 | 287 | - | 0.2529 |
41.48 | 290 | 0.0005 | - |
42.0 | 294 | - | 0.2545 |
42.96 | 300 | 0.0006 | - |
43.0 | 301 | - | 0.2534 |
44.0 | 308 | - | 0.2536 |
44.32 | 310 | 0.0004 | - |
45.0 | 315 | - | 0.2521 |
45.8 | 320 | 0.0005 | - |
46.0 | 322 | - | 0.2532 |
47.0 | 329 | - | 0.2519 |
47.16 | 330 | 0.0005 | - |
48.0 | 336 | - | 0.2525 |
48.64 | 340 | 0.0004 | - |
49.0 | 343 | - | 0.2535 |
50.0 | 350 | 0.0005 | 0.2542 |
51.0 | 357 | - | 0.2540 |
51.48 | 360 | 0.0004 | - |
52.0 | 364 | - | 0.2542 |
52.96 | 370 | 0.0005 | - |
53.0 | 371 | - | 0.2538 |
54.0 | 378 | - | 0.2533 |
54.32 | 380 | 0.0004 | - |
55.0 | 385 | - | 0.2544 |
55.8 | 390 | 0.0004 | - |
56.0 | 392 | - | 0.2539 |
57.0 | 399 | - | 0.2541 |
57.16 | 400 | 0.0005 | - |
58.0 | 406 | - | 0.2532 |
58.64 | 410 | 0.0004 | - |
59.0 | 413 | - | 0.2543 |
60.0 | 420 | 0.0004 | 0.2532 |
61.0 | 427 | - | 0.2541 |
61.48 | 430 | 0.0004 | - |
62.0 | 434 | - | 0.2542 |
62.96 | 440 | 0.0005 | - |
63.0 | 441 | - | 0.2546 |
64.0 | 448 | - | 0.2549 |
64.32 | 450 | 0.0003 | - |
65.0 | 455 | - | 0.2557 |
65.8 | 460 | 0.0004 | - |
66.0 | 462 | - | 0.2557 |
67.0 | 469 | - | 0.2539 |
67.16 | 470 | 0.0004 | - |
68.0 | 476 | - | 0.2538 |
68.64 | 480 | 0.0004 | - |
69.0 | 483 | - | 0.2538 |
70.0 | 490 | 0.0004 | 0.2542 |
71.0 | 497 | - | 0.2532 |
71.48 | 500 | 0.0004 | - |
72.0 | 504 | - | 0.2538 |
72.96 | 510 | 0.0004 | - |
73.0 | 511 | - | 0.2545 |
74.0 | 518 | - | 0.2531 |
74.32 | 520 | 0.0003 | - |
75.0 | 525 | - | 0.2534 |
75.8 | 530 | 0.0004 | - |
76.0 | 532 | - | 0.2541 |
77.0 | 539 | - | 0.2545 |
77.16 | 540 | 0.0004 | - |
78.0 | 546 | - | 0.2536 |
78.64 | 550 | 0.0004 | - |
79.0 | 553 | - | 0.2545 |
80.0 | 560 | 0.0004 | 0.2540 |
81.0 | 567 | - | 0.2545 |
81.48 | 570 | 0.0004 | - |
82.0 | 574 | - | 0.2541 |
82.96 | 580 | 0.0004 | - |
83.0 | 581 | - | 0.2545 |
84.0 | 588 | - | 0.2538 |
84.32 | 590 | 0.0004 | - |
85.0 | 595 | - | 0.2546 |
85.8 | 600 | 0.0004 | 0.2544 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 209
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for JianLiao/spectrum-doc-fine-tuned
Base model
BAAI/bge-large-en-v1.5Dataset used to train JianLiao/spectrum-doc-fine-tuned
Evaluation results
- Cosine Accuracy@1 on sdsself-reported0.007
- Cosine Accuracy@3 on sdsself-reported0.016
- Cosine Accuracy@5 on sdsself-reported0.047
- Cosine Accuracy@10 on sdsself-reported0.782
- Cosine Precision@1 on sdsself-reported0.007
- Cosine Precision@3 on sdsself-reported0.005
- Cosine Precision@5 on sdsself-reported0.009
- Cosine Precision@10 on sdsself-reported0.078
- Cosine Recall@1 on sdsself-reported0.007
- Cosine Recall@3 on sdsself-reported0.016